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ABSTRACT 
 

This dissertation aims to provide a better understanding of the technology licensing 

practices of academic research institutions. The study identifies time durations in 

licensing and incorporates these into a model to evaluate licensing performance. 

Performance is measured by the efficiency of an institution’s technology licensing 

process and efficiency changes over time, using Association of University Technology 

Managers annual survey data from 1991 to 2007. Organizational characteristics 

influencing the licensing performances of 46 U.S. research institutions also are explored. 

 

The study resulted in a new approach that integrates the identification of time lags in 

licensing, analysis of efficiency change, and exploration of the influence of 

organizational characteristics on efficiency change. A super-efficiency variable returns to 

scale data envelopment analysis (DEA) model was applied to the time-lag neutralized 

licensing data, to measure the efficiency of U.S. research institutions’ licensing 

performance over time. The study also includes an innovative approach to resolving 

issues with the super-efficiency DEA model, including mathematical infeasibility and 

zero-data issues. 

 

The licensing mechanisms included in the study are disclosure, patent applications, 

patents issued, licenses and options executed, start-ups, and licensing income. The time 

duration from expenditure to licensing income, including all intermediating licensing 
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processes, ranged from 2 to 27 years. The study identified the organizational 

characteristics related to licensing practice. Academic prestige and research quality are 

positively related to disclosure, patents granted, and start-up. The resources of a 

technology licensing office influences the number of licensing agreements, whereas 

licensing office experience has a positive relationship with start-ups. Increased licensing 

resources improve the efficiency of licensing practices, and a research institution with 

more dedicated licensing staff has improved licensing productivity. Private institutions 

improved their licensing practice more than public ones during the study period. On the 

other hand, institutions with a medical school demonstrated low efficiency. 

 

This dissertation fills a gap in the understanding of licensing practice and the 

organizational characteristics related to licensing performance. In addition, the study 

contributes to research methodology by providing a new approach to identifying time 

lags and improving the DEA method. 

 

The results, grounded in comprehensive observations over multiple time durations, 

provide an insight into the licensing practices of U.S. research institutions. The 

dissertation presents recommendations for research institutions based on the relationships 

identified among academic prestige, research intensity, organizational characteristics of 

the technology licensing office, and licensing performance.  
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1Chapter 1. Introduction 

The present study aims to provide a better understanding of technology licensing by 

academic research institutions. The study assesses the efficiency of academic research 

institution technology commercialization practices and examines how their efficiency has 

changed over time and institutional characteristics influencing the performance. This was 

accomplished using a new approach for identifying time lags in licensing. In addition to 

the time-lag process, a modified super-efficiency variable returns to scale (VRS) data 

envelopment analysis (DEA) model was applied to the time lag–neutralized licensing 

data. This model measured the efficiency of U.S. research institutions’ licensing 

performance over time. To accomplish this, it first was necessary to resolve issues with 

the super-efficiency DEA model, including mathematical infeasibility and zero-data 

considerations. 

 

Technology transfer is the movement of technological and technology-related 

organizational know-how and knowledge to partners in order to enhance the partner’s 

competence and strength [2]. Traditionally, technology transfer was regarded as a method 

of acquiring new technologies from other companies or as a way to internally transfer 

products or process technologies throughout a company to improve technological 

competence and fill technological capacity gaps. In recent years, however, interest has 

shifted to university research. University research has been an important source of new 

technologies and products and has contributed significantly to industrial innovation in 
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various fields [16, 22, 48, 56, 75, 129]. A university’s contribution to the knowledge 

economy is expected to be increasingly critical in the future [136]. Therefore, universities 

are shifting from their traditional mission of teaching and are including an emerging 

mission of contributing to industry with their knowledge [46, 135]. 

 

Extensive studies have attempted to understand the research and development (R & D) of 

companies and thus to improve their productivity. These studies have provided 

theoretical and practical advances in the technology management of industry. While the 

companies were considered the main objective of the studies, in the context of the growth 

of national science, technology, and economic development, other studies on universities 

have focused on education and research [90]. Universities need to learn from the 

development of the business sector to respond to a quickly changing global economy [43]. 

 

Universities are service entities providing education, research, and services to the 

community and local businesses [117]. They transfer knowledge to outside organizations. 

Applied and basic research, in addition to education, have been universities’ primary 

tasks. However, as the commercialization of university-created knowledge becomes 

prominent (with federal government support and serving industrial needs), universities 

are trying to achieve effective technology transfer and to gain financial benefit. 

 

During the past two decades, various university activities have become interesting 

research areas, and very active and significant studies have focused on universities’ 
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technology development. Many studies have shown that universities are critical research 

and innovation centers, accelerating and increasing the national economic growth and 

technology competencies of a country and its industries [43, 100]. Therefore, academic 

studies have attempted to provide a better understanding of the nature of university 

technology transfer and to outline possible ways to improve technology 

commercialization. The most popular research topics have focused on finding best 

practices through benchmarking studies and locating important characteristics that lead to 

improved university performance. 

 

 Performance evaluations require multiple perspectives and must be based on the 

understanding of complex interests and roles. A framework or model integrating  various 

stakeholder activities and interests, different goals, and different intellectual property 

portfolios is required to facilitate best practices [80]. 
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 Research Scope and Objective 1.1.

 Related Topics and Research Scope 1.1.1.

There are four major paths of technology transfer among organizations: industry to 

industry, university to industry, government to government, and government to industry 

[18]. This study examines the commercialization of university technology research for 

industrial applications. There is a wide range of studies on university-to-industry 

technology transfer (Figure 1). The top level of topics focuses on the effect of university 

technology transfer on national economic growth and scientific and technological 

capacity. The second level focuses on technology transfer at the organizational level. 

Studies in this area evaluate the performance of university technology commercialization 

by benchmarking multiple universities, and examine the organizational characteristics 

that influence performance. The third level examines the commercialization process and 

the role of technology commercialization offices. Finally, the fourth level focuses on 

understanding and developing an individual technology commercialization mechanism. 

This dissertation covers the second and third levels. 
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Figure 1: Related topics and the scope of the dissertation 
 

 Research Objective and Goals 1.1.2.

The main objective of this dissertation is to contribute to the understanding of academic 

research institution technology commercialization (ARITC) activity by evaluating 

efficiencies and identifying patterns of change over time. Influencing characteristics, 

identified through the reviewed literature, are explored to understand their effect on 

performance and to define characteristic patterns. There are four research goals. 

 Goal 1: To identify the ARITC process and incorporate the time-lag effect 

 Goal 2: To assess U.S. ARITC performance from 1991 to 2007 

 Goal 3: To identify changes in ARITC efficiency during the period 1991 to 

2007 

 Goal 4: To identify the characteristics of ARITC performance 
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 Research Questions 1.2.

The following research questions are intended to achieve the research objective and goals. 

 

The research questions corresponding to Goal 1 are as follows: 

Research Question 1: What is the process of ARITC? 

Research Question 2: What are the input and output structures of ARITC? 

Research Question 3: What time lags exist among ARITC inputs and outputs? 

Research Question 4: What is the appropriate model to incorporate time-lag effects 

into the technology commercialization process? 

 

The research question corresponding to Goal 2 is as follows: 

Research Question 5: What are the efficiencies of U.S. ARITC from 1991 to 2007? 

 

The research question and sub-questions corresponding to Goal 3 are as follows: 

Research Question 6: What patterns of change are found in U.S. ARITC efficiencies 

from 1991 to 2007? 

 Research Question 6-1: What trends exist in technology 

commercialization process inputs and outputs over time? 

 Research Question 6-2: What trends exist in the technology 

commercialization efficiencies of U.S. academic research institutions from 

1991 to 2007? 

 

The research question corresponding to Goal 4 is as follows: 
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Research Question 7: What relationships exist among ARITC characteristics and 

licensing performance? 

 

 Research Process 1.3.

The present study assesses the relative licensing productivity of academic research 

institutions. The results will indicate how well a particular institution is licensing its 

technology, given its resources, relative to other universities. For this purpose, this study 

develops a research process (Figure 2). 

 

 

Figure 2: Research framework 
 

Assessment framework of the academic research institution 
technology commercialization (ARITC) 

Define university technology licensing 
process, and identify the characteristics related 

to the ARITC performance 

Assess the efficiency of U.S. ARITC  

Define the efficiency change patterns 

Identify characteristics of the  
ARITC performance 

Best practices in ARITC and their characteristics 

Identify time-lag effects among the inputs and 
outputs of ARITC  

Develop a process detecting the 
time-lag effects 

Develop a super efficiency DEA 
model resolving computational 
infeasibility and zero data issue 
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First, the process of ARITC and its input and output structure are defined through a 

literature review. The characteristics influencing the performance of ARITC are 

identified. 

 

Second, time-lag coefficients are identified through a suggested time-lag identifying 

process in order to incorporate into the ARITC efficiency model the duration between 

input and output variables. For this purpose, time-lag distribution functions and 

aggregated time-lag effects are defined. 

 

Third, the relative efficiencies of the ARITC are evaluated. The modified super-

efficiency Banker, Charnes, and Cooper (BCC) [12] DEA model is suggested to assess 

the technology licensing efficiencies of U.S. academic research institutions from 1991 to 

2007. Infeasibility and computation limitation due to zero data of the DEA model are 

discussed and a solution is provided. Time lag effect neutralized data are used for the 

analysis. 

 

Fourth, efficiency changes are observed and their patterns are identified. 

 

Finally, the relationships among characteristics and efficiencies and their changes are 

examined to define characteristic patterns and to understand the technology licensing 

practices of the observed institutions. 
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The links between research goals, questions, and methods are summarized in Table 1. 

 

Table 1: Links among research objective, goals, questions, and approaches 

Research Objective: 
Contribute to the understanding of academic research institution technology 

commercialization (ARITC) activity by evaluating efficiencies and identifying patterns of 
change over time and exploring ARITC characteristics influencing licensing performance. 

    
 

Research Goals 
 

Research Questions 
 

Research Approaches 

G1: Identify the 
ARITC process 
and incorporate 
the time-lag 
effect. 

→ 

RQ1: What is the process 
of ARITC? 
RQ2: What is the input and 
output structure of ARITC?  
RQ3: What time lags exist 
among ARITC inputs and 
outputs? 
RQ4: What is the 
appropriate model to 
incorporate time-lag effects 
into the technology 
commercialization process? 

→ 

STEP 1: A model of the ARITC 
process and its input and output 
structure are defined based on 
the literature review. 
 
STEP 2: Time lags among input 
and output variables are 
identified by time-series 
analysis. A process identifying 
time lags among variables is 
developed and then validated by 
using simulated ARITC data. 

G2: Assess U.S. 
ARITC 
performance 
from 1991 to 
2007. 

→ 

RQ5: What are the 
efficiencies of U.S. ARITC 
from 1991 to 2007? 

→ 

STEP 3:  Aggregated time-lag 
effects of the ARITC are defined 
by time-lag functions and 
coefficients. 
 
STEP 4: Efficiencies of U.S. 
ARITC from 1991 to 2007 are 
evaluated using a modified 
super-efficiency DEA model and 
the Malmquist Index. 

G3: Identify 
changes in 
ARITC 
efficiency during 
the period 1991 
to 2007. 

→ 

RQ6: What patterns of 
change are found in U.S. 
ARITC efficiencies from 
1991 to 2007? 

→ 

STEP 5:  Performance 
(efficiency) changes are 
measured by average efficiency, 
efficiency change, and the 
Malmquist Index. 

G4: Identify the 
characteristics of 
the ARITC 
performance.  

→ 

RQ7: What relationships 
exist among ARITC 
characteristics and 
licensing performance?  

→ 

STEP6: Explore the 
relationships between 
performance and characteristics 
through statistical analysis. 
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 Major Findings and Contributions 1.4.

The present study provides insight into the licensing practices of an academic research 

institution and presents tools to measure the licensing time lags and the performance of 

academic researchers and licensing practitioners, thus filling gaps identified in previous 

research. 

 

 Gap 1: Lack of a study identifying the time-lag effect in licensing 1.4.1.

Licensing is a complicated process involving multiple organizations and time-consuming 

activities. When discussing licensing performance, existing studies do not identify 

processes and therefore do not consider time duration. Failure to determine when the 

actual input was delivered is a significant gap and leads to inappropriate interpretations of 

licensing output data and their implications. 

 

The limitations arise because licensing is a complicated process associated with the 

inherently high uncertainty of research and technology transfer activity, and because 

there is no tool or process to identify licensing time lags in a systematic and scientific 

way. Therefore, the present study develops a licensing-time-lag identification process 

based on time series theory and methods widely adopted in econometrics. The process 

was verified by multiple tests using simulated data that reflect actual licensing behavior, 

and then was applied to data on 46 U.S. academic research institutions. The process 

identified statistically significant time-lag effects between two licensing variables. The 
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overall time durations identified in the data, from research expenditure to licensing 

income, range from 2 years to 27 years. 

 

 Gap 2 and Gap 3: Difficulties in measuring relative licensing performance, 1.4.2.

and lack of understanding of changes in licensing performance over time 

Government and research institutions have been struggling to understand and define the 

licensing performance of research institutions, which is necessary to respond to 

government-facilitated technology transfer policy and institutions’ need to contribute to 

the economy and industry. The conflicting interests and understanding about research 

licensing as well as a lack of a concrete evaluation framework complicate performance 

measurement. Existing studies evaluating the relative licensing performances do not 

satisfy the need because 

 they measure the performance of the licensing office rather than the licensing 

performance of an institution; 

 their evaluation models apply different types of variables, such as influencing 

characteristics and licensing variables, which makes it difficult to interpret and 

understand the licensing performance; 

 they do not measure the different performances of efficient institutions, which 

is related to the limitation of the DEA method and is associated with 

computational infeasibility when the variable returns to scale super-efficiency 

model is applied; and 
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 they do not incorporate into their model time lags between the licensing 

variables. 

 

The present study defines the licensing process and related variables. In order to identify 

the licensing performance of an organization in a manner that provides clear 

understanding and avoids conflicting views of the result, the evaluation model used 

licensing variables associated with intrinsic licensing outcome and licensing quality. 

 

The study also overcomes the methodological limitations of DEA by comparing the 

strengths and weaknesses of current DEA approaches and by modifying a selected 

method to resolve the computational infeasibility and zero-data issues. The modified 

model was applied to the Malmquist Index (MI) to explore efficiency changes from 1991 

to 2007, and the licensing time lags identified in this study were incorporated into the 

evaluation model. The results show that all 46 research institutions improved their 

licensing performance during the period. The average annual improvement was 33%. 

Two distinct periods of licensing performance were identified. Catch-up efforts of the 

inefficient institutions were dominated in licensing practice associated with research 

expenditure from 1992 and 1996, whereas the efficient institutions further improved their 

performance from 1996 to 1998. 
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 Gap 4: Lack of understanding the characteristics influencing the 1.4.3.

performance and practice of licensing 

The existing studies provide limited understanding of the characteristics influencing 

licensing performance, which is measured without considering the time-lag effect. As a 

result, interpretation of identified relationships is limited. In addition, each study analyzes 

effects on a different type of performance, such as licensing income, average licensing 

income relative to research expenditure, or efficiency scores, and employs different data 

sets and institutions. Results therefore vary, depending on the performance types, data, 

and assumptions used in the studies. This makes it difficult to compare and interpret 

results. 

 

The present study describes the comprehensive relationships among the selected ARITC 

characteristics found in the literature review and among different types of licensing 

performance. The study applied three performance types identified in the literature: 

licensing income, licensing income relative to expenditure, and DEA efficiency scores. 

The results provide insight into the current debates about the value, direction, and 

perceptions of licensing efforts by exploring relationships among academic prestige, 

research intensity, technology transfer resources, and licensing performance. The study 

indicates that prior researchers’ different findings about the relationships between 

characteristics and licensing performance were due to the application of different 

performance metrics: Some measured the amount of licensing income whereas others 

measured the efficiency of licensing performance. 
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2Chapter 2. Literature Review 

There are several internal and external stakeholders of universities such as university 

administrations, faculties, technology commercialization offices, the federal government, 

and industry. This study will contribute to their understanding of university technology 

transfer by measuring the relative performances of academic research institution 

technology commercialization (ARITC) and enlightening the relationships between the 

performances and the influencing characteristics.  

 

For this purpose, the literature related to these issues has been reviewed in the following 

sequence.  

 The first section of the literature review is done to understand the overall 

characteristics of universities and motivation for university technology 

commercialization.  

 The second section is focused on studying the nature and process of university 

research and technology commercialization. 

 The current approaches of assessing the performance of technology 

commercialization are reviewed in section three.  

 Section four reviews the influencing characteristics of ARITC and their impact on 

performance and organizational commercialization practice. 

 Section five reviews the pattern diagram identifying ARITC efficiency change 

patterns. 
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 Section six reviews the method of data envelopment analysis (DEA), which is 

considered as the appropriate method for this study.  

 Finally, gaps between the current literature and the goals of this study are 

discussed in section seven. 

 

 Organizational Characteristics of Universities 2.1.

This section reviews the basic characteristics of a university as they relate to technology 

commercialization. 

 

 Missions, Goals and Services of Universities 2.1.1.

Universities have evolved from being traditional education centers to knowledge factories 

and will change to knowledge hubs, according to Youtie and Shapira [135]. As their 

mission evolves, their roles in industry and the economy are expected to increase.  

 

However, there are conflicts and debates about the missions and goals of universities. 

One side insists that universities should play a more direct role in assisting industries by 

commercializing their research, while the other side argues that more involvement with 

industry will damage the research and teaching done by universities [87, 103].  

 

Since the Bayh-Dole Act of 1980, many universities seem  more concerned with 

introducing their knowledge to industry, and thereby contributing directly to the local 

economy [88]. Decter, et al. [36] identified the main roles of universities and the 
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perceived relative importance of them by a survey of 57 U.S. universities. They found 

that universities regarded teaching, publishing new information and basic research as the 

most important roles, followed by service to community, technology transfer, applied 

research, and patenting new technology.  

 

The traditional goal of science and technology colleges in a university is to provide 

advanced scientific knowledge to the public for various benefits as a service organization. 

Universities are the source of well-trained technicians, engineers, and managers. These 

experts support regional and urban economic growth [48, 56].  Another traditional 

mission of universities is research. Universities in the U.S. and Europe contribute to the 

development of knowledge-intensive clusters and play a major role in knowledge 

creation [65, 115].  

 

Hershberg, et al. [56] and Feldman and Desrochers [45] found that not all universities 

emphasize technology transfer. Florida [46] argued that universities are becoming 

aggressive at attempting to profit from industry-funded research, and industries are not 

comfortable with their behavior. He emphasized the importance of the traditional roles of 

universities:  education and research. Some of them try to contribute to the public benefit 

by opening their licenses.  

 

Kapczynski, et al. [61] gave related examples of providing university technologies for 

public benefits. Yale University and the University of Washington granted exclusive 
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license of high potency compounds to a non-profit drug company, One World Health, in 

2003. At the same time, they continued related research as partners. Stanford University 

also reserves an exclusive licensing agreement for both commercial and non-commercial 

research. In the case of the University of Wisconsin, licensing is reserved for only non-

commercial research.  

 

Different perceptions of technology transfer exist among university scientists, managers 

in technology licensing offices (TLOs), and industrial counterparts [18, 111]. These 

conflicts of interest lead universities to select different paths among traditional missions, 

programs, and their reputations, and the interests of firms seeking profits, growth, and 

competitive advantages. 

 

Therefore, universities may have different priorities for two different objectives: 

 Following  the traditional mission of teaching and research 

 Gaining a competitive advantage and growing 

 

These objectives influence the following major activities of universities: 

 Education and the service to the community 

 Applied and basic research 

 Commercialization 
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Public perception of university technology commercialization is complicated. Therefore, 

it is worthwhile to establish the right goals, and measure the performance of university 

technology commercialization in order to obtain public support and improve the activity 

[118]. 

 

  Organizational Structure 2.1.2.

Bercovitz, et al. [16] proposed that technology commercialization activities of processing 

an invention disclosure, licensing, seeking additional sponsorship of R&D projects, or a 

combination of the three, are shaped by the resources, reporting relationship, autonomy, 

and incentives of the TLO. They adapted organizational structures identified by Chandler 

[27] to the university structure in order to examine the influences of university 

organizational structure on technology commercialization performance.  

 

They defined organizational structures in terms of information-processing capacity, 

coordination capability, and incentive alignment. Four organizational structures are 

defined: unitary form (U-Form), multidivisional structure (M-Form), holding company 

(H-Form), and matrix structure (MX-Form). The U-Form has a top-down oriented 

decision structure and strong vertical control, while the M-Form structure adopts a 

divisional approach with central control over divisions. H-Form is similar in structure to 

M-From, but has a less centralized decision process with strong unit level incentives. 

MX-Form operates with both a functional and product hierarchy in which an individual 

and subunit are responsible for multidimensional functions.  Detailed definitions and 
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characteristics of the four forms are provided in Table 2. They found that different 

university structures have their own effective technology transfer capabilities such as 

coordination capability, information processing capacity, and incentive alignment.  

 

Table 2: Organizational structure [16] 

Organizational 
structure 

Information-
processing capacity 

Coordination 
capability (across 

units) 

Incentive alignment  
(across units) 

U-Form 
(Unitary) 

0 
Limited by HQ size; 
the need  to funnel 
decisions through top 
management group 
creates a bottleneck 

+ 
Coordination 
capabilities among 
sequential work units 
are relatively strong 
given vertical control 

+/0 
Difficult to create 
unit-level incentives 
compatible across 
units and in line with 
organizational goals 

H-Form 
(Holding 

Company) 

++ 
Decentralized 
decision-making 
leads to higher overall 
information-
processing capacity 

+/0 
Weak central body 
allows for limited 
top-down 
coordination across 
units 

+/0 
Strong unit-level 
incentives; sub-goal 
pursuit often 
problematic due to 
weak organizational 
ties 

M-Form 
(Divisional) 

++ 
Decentralized 
decision-making 
leads to higher overall 
information-
processing capacity 
within units 

+ 
Strong central body 
allows for moderate 
top-down 
coordination across 
units 

+ 
Strong unit-level 
incentives; sub-goal 
pursuit problematic 
but tempered by 
stronger 
organizational ties 

MX-Form 
(Matrix) 

+ 
Multiple dimension 
responsibilities may 
tax information 
processing capacity 
within units 

++ 
Dual dimension 
responsibilities drive 
coordinated action 

++ 
Dual incentives: 
Functional and 
product incentives 
are integrated to 
reflect organizational 
goals 

 
Note: Impact on Capabilities (0:weak, +: semi strong,  ++:strong) 
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Bercovitz, et al. analyzed three universities to examine the relationship between 

technology transfer activity and organizational structures. The coordination capability is 

measured by customer overlaps (number of transactions); information processing 

capacity by yield of disclosure, licenses, and sponsored research agreements; and 

licensing alignment by trade-off between licensing royalty rate and sponsored research 

dollars. The results are summarized in Table 3: however, they were measured 

subjectively by the authors, and statistical methods were not applied.  

 

Table 3: University organizational structure and technology transfer activity [16] 

University Structure 
Coordination 

Capability 

Information 
Processing 
Capacity 

Licensing 
Alignment 

Expect Result Expect Result Expect Result 
Johns Hopkins 

Univ. 
H-Form Low Low High High Low Low 

Duke Univ. 
MX-
Form 

High High Medium Medium High High 

Pennsylvania 
State Univ. 

M-Form Medium Medium High High Medium Medium 

 
 

 Overall Performance Indicator of Universities 2.1.3.

Quality assessment (or performance evaluation) of higher education institutions has been 

a major concern since the 1980s [49]. There are three quantitative approaches to the 

assessment of the overall performance of universities: performance indicators, cost 

function, and non-parametric [49]. Performance indicator (PI) focuses on the 

performance of teaching (teaching quality assessment, TQA) and research (research 

assessment exercise, RAE). The UK government, for example, published PIs of higher 
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education institutions and highlighted efficiency and PI as tools central to its policies [25]. 

The cost function is a classic economics tool applying economies of scales, marginal 

costs and economies of scope. However, this tool requires sufficient and reliable cost data 

for the individual university. Finally, a non-parametric approach uses a model of the 

inputs and outputs [49]. 

 

Both state and federal governments have tried to assess the performance of higher 

education institutions to develop and implement their policies [85, 118]. They developed 

performance indicators (PI) for universities. PIs assess the areas of general administration, 

teaching and research. The current studies and practices on the performance index 

measure combine indicators of mostly teaching and research. The PI components or 

check-list, which are generally developed by the coordinating body, include the 

organizational setting of the study program, student input numbers and characteristics, 

aims and curriculum, assessment methods, teaching and learning environment, study load, 

student progress, completion rates, student counseling arrangements, number of graduates 

and employment, educational policy, personnel policy, and internal quality [49]. 

 

For example, the Southern Regional Education Board (SREB) adopted legislation to 

collect and report information on the performance of higher education institutions in the 

region from the 1980s [118].  The South Carolina Commission on Higher Education 

(SCH) developed nine categories and 37 indicators of overall performance to assess 

teaching and research of universities in South Carolina. They applied some of the 37 
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indicators every year and used a scoring method to calculate overall PI. The categories 

consist of mission focus, faculty quality, classroom quality, collaboration, administration 

efficiency, entrance requirement, graduates’ achievements (graduation rate, employment 

rate, employer feedback, exams, and certificates), the user-friendliness of the institution, 

and research funding. 

 

Geva-May [49] identified 12 PIs which are related to the universities’ policies and goals. 

They include the increase in the number of graduate students, the increase in the number 

of students at the universities, drop-out rate, number of years of study, the increase in the 

number of senior faculty, faculty qualifications, ratio of faculty per number of graduates, 

number of publications, amount of research grants, budgets and expenditure, physical 

conditions (built area and related facilities), and answers to social/national needs.  Mollis 

and Marginson [85] in their study assessing overall performance of universities pointed 

out that university size, age, mission and public or private status should be considered 

when evaluating universities. 

 

 Summary 2.1.4.

Universities have different research environments and attitudes toward the 

commercialization of their discoveries than  the industry. These differences are inherent 

in the distinctive missions, roles, and organizational structures. Goals and missions of 

universities are becoming more complicated as the social need for economic 
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contributions of universities increase, along with their traditional services, such as 

knowledge creation/dissemination and education [17, 42]. 

 

 Technology Commercialization of University Research 2.2.

 Relationship between Teaching, Research and Technology 2.2.1.

Commercialization 

Generally, universities with high reputations are regarded as having high quality 

instruction and good research environments in which their faculties can spend less time 

and effort on teaching. However, studies show that research and teaching are not related 

[37, 44, 120]. 

 

Universities conduct more than half of the national basic research in the U.S. [61], and  

their research has served as an important source of scientific and technical knowledge for 

industrial firms [17]. Mansfield [75] provided evidence that the contribution of university 

research is considerable, especially in the areas of drugs, instruments and information 

processing. The author showed that about 10% of the new products and commercialized 

processes were based on university research in those areas between 1975 and 1985.  

 

 Motivation and Benefit of a University Commercializing a Technology 2.2.2.

Universities have actively facilitated technology commercialization because of 

quantitative and qualitative benefits as well as its encouragement by government policy. 

Some reasons U.S. universities are motivated to transfer their research results are 
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contribution to business, royalty income, good publicity for the university, financial 

support for research, satisfaction of disseminating technologies, and recruitment and 

retention of staff [36]. Entrepreneurs often finance further research at universities from 

which they originally spun off [98]. Reinforcement of campus reputations for excellence 

contributes to the recruitment of the smartest students and the brightest faculty [46]. 

Siegel, et al. [113] identified stakeholders’ primary and secondary motives for 

technology commercialization as shown in Table 4. 

 

Table 4: Stakeholders’ motivation for technology commercialization [113] 

Stakeholder Primary motives Secondary motives Perspective 

Scientist 
Recognition within 

the scientific 
community 

Financial gain and a desire 
to secure additional 

research funding 
Scientific 

Technology 
commercialization 

office 

Protect and market 
the university’s 

intellectual property 

Facilitate technological 
diffusion and secure 

additional research funding 
Bureaucratic 

Firm/Entrepreneur Financial gain 
Maintain control of 

proprietary technologies 
Organic / 

entrepreneurial 

 

McMillan [82] summarized the literature on the role and contribution of university 

research and public funding from the view of society and industry.  

 University research generates scientific publications. 

 Public funding of university research provides patents and innovations. 
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 University research provides opportunities for spillovers from the public sector to 

the private sector. 

 University technology transfer drives the movement of trained scientific 

personnel from academia to industry. 

 

Grimaldi and von Tunzelmann [53] summarized the benefits companies receive from 

university technology commercialization:  

 Economies of scale and scope in research 

 Reduction of product or process costs 

 Acceleration of R&D 

 Avoiding unnecessary duplication of research 

 Risk management 

 Financial support for costly projects or equipment 

 Access to research know-how networks and related technologies 

 Technology and knowledge transfer, assimilation and utilization 

 Hiring university students or graduates 

 Enhancement of reputation 

 

Decter, et al. [36] surveyed the importance of motivations for U.S. universities to transfer 

technology to business. They can be ranked as follows based on their survey result from 

highest to lowest. 

 Rank 1: satisfaction of disseminating technologies 
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 Rank 2: financial support for university research 

 Rank 3: recruitment and retention of staff 

 Rank 4: good publicity for the university 

 Rank 5: royalty payments to university 

 Rank 6: royalty payments to the  inventors 

 Rank 7: legislation 

 Rank 8: university support to business 

 

Grimaldi and von Tunzelmann [53] provided a comprehensive view of the benefits that a 

university could acquire by technology commercialization or university-industry 

collaborations as the following. 

 Greater research output through university publications and patents 

 Exploiting intellectual ideas 

 Experience of industrial applications to feed into teaching 

 Projects, funds and placements for students 

 Funding for laboratory equipment 

 Access to company equipment, industry know-how and technical advice 

 Adoption of new standards 

 Establishment of academic spin-off companies 

 Entry to international R&D programs 

 Reputation in general 
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Jackson [58] in his case study of the India University Advanced Research and 

Technology Institute provided four reasons for technology commercialization activities. 

 Providing additional revenue to the university through licensing activities 

 Enhancing university recognition and visibility in the business community 

 Providing additional outlets and incentives to attract and retain talented faculty 

 Affecting the employment landscape of the community through company and job 

creation via incubators, joint ventures and licensing activities 

 

In summary, universities transfer their research in order to acquire financial resources, 

facilitate internal growth, improve teaching and research, and provide service to their 

community. 

 

 Technology Transfer Mechanisms 2.2.3.

The outputs of the technology transfer mechanisms range from intangible to tangible 

outcomes. Patenting, licensing and start-ups are the most frequently discussed and 

important technology transfer methods in the literature, while a few studies emphasized 

the importance of other methods such as consulting, training, and exchange programs. 

This is consistent with the survey done by Siegel, et al. [111] about major outputs mostly 

recognized by the TLO. There are also informal ways to transfer knowledge to industry 

via meetings, telephone conversations, and conferences [2].  
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Siegel, et al. [114] also surveyed how different stakeholders defined the outcomes of 

technology transfer. The results are presented in Table 5. 

 

Table 5: Outcomes of university technology transfer identified by stakeholders [114] 

Outcomes 
TLO director 

and 
administrators* 

University 
scientists* 

Managers and 
entrepreneurs* 

Licenses 86.7 25.0 75.0 

Royalties 66.7 15.0 30.0 

Patents 46.7 20.0 10.0 

Sponsored research 
agreements 

46.7 0.0 5.0 

Startup companies 33.3 10.0 5.0 

Invention disclosures 33.3 5.0 0.5 

Students 26.7 15.0 25.0 

Informal transfer of know-
how 

20.0 20.0 70.0 

Economic development 20.0 0.0 35.0 

Product development 6.7 35.0 40.0 

 
Note: * = The number is the percentage of respondents who identified each item as on output 

 

Arvanitis, et al. [8] defined the technology transfer mechanisms as a wide range of 

knowledge and technology transfer including teaching, university research and research 

contracts with companies. They studied how those mechanisms contribute to innovation 

in Swiss industries. They found that reading of and referring to publications, attending 

conferences and workshops, and informal contacts are the most important knowledge and 

technology transfer activities. However, they didn’t consider direct technology transfer 

modes such as licensing. 
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Jensen and Thursby [59] surveyed how differently the technology commercialization 

office, university administration and faculty recognized the importance of each outcome. 

Their rankings are presented in Table 6. This result indicated that both the 

commercialization offices and university administrators regard the licensing income as 

the important outcome. On the other hand, faculties preferred sponsored research to 

licensing revenue.  

 

Table 6: Importance of technology transfer outcome [59] 

Outcomes 
Rank by 

commercialization 
office* 

Rank by 
university 

administration* 
Rank by faculty* 

Revenue 1 1 2 

Inventions commercialized 2 3 3 

Licenses executed 3 3 5 

Sponsored research 4 2 1 

Patents 5 5 5 

 
Note: * = Lower number means greater importance. 

 

In the case of sponsored research, there is an inconsistency in the result of Siegel, et al. 

[114] and Jensen and Thursby [59]. The survey of the former study showed that faculties 

didn’t consider sponsored research as an outcome of the university technology transfer, 

while the latter study found that faculties consider it to be the most important outcome. 

The reason for the difference in perception is due to the nature of the sponsored research 

as Thursby and Kemp [122] mentioned, “Sponsored research is, in part, an intermediate 

good as well as a final product.”  
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 Technology Commercialization Process from University to Industry 2.2.4.

Stakeholders of university technology commercialization are faculty inventors, the 

technology licensing office (TLO) in a university, and a firm/entrepreneur. Some studies 

identified their roles in the technology process. Licensing is identified as a major process 

in technology commercialization. 

 

Siegel, et al. [113] described the licensing process (Figure 3). After a scientific discovery, 

the faculty or researcher files an invention disclosure with the help of the TLO only if the 

disclosure has enough value to be transferred. It should be a significant breakthrough, fill 

market needs, and be mature enough to be used by a company [23]. The TLO evaluates 

its potential for commercialization and decides patenting strategies, including global or 

domestic patents. The TLO is in a stronger negotiation position when it seeks to market 

and commercialize the intellectual property. 

 

Finally, the TLO negotiates a licensing agreement and manages its financial benefits. 

However, as the authors pointed out, this linear process emphasizes the patent over the 

whole process. Some companies may prefer to obtain licensing before the technology is 

patented. 
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Figure 3  An example of technology commercialization from a university to a firm or 
entrepreneur (adopted from Siegel, et al. [113]) 

 

Rogers, et al. [102] included start-up companies in the technology process. Universities 

have two options of licensing or forming a venture company once a patent of the 

discovery is issued (Figure 4).  

 

 

Figure 4: Technology commercialization process (adopted from Rogers, et al. [102]) 
 

Jensen, et al. [60] provided an interesting licensing process with the view of a game of 

three stakeholders: faculty inventor, central administration, and TLO. They defined the 

TLO as a dual agent serving both the central administration of its university and faculty 

inventor. According to their model, the central administration decides the contract form 
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of commercialization, and the TLO looks for a path to commercialization according to 

the faculty inventor’s decision (Figure 5). They discovered how these three decision 

makers are working through the different stages of the research result. 

 

 

Figure 5: Disclosure and licensing process (adopted from Jensen, et al. [60]) 
 

 Time-Lag in the Technology Commercialization Process 2.2.5.

The Association of University Technology Managers (AUTM) reported that the Canadian 

Licensing Survey highlighted time-lags between research expenditure and two outputs of 

invention disclosures and patent applications using a graphical presentation [10]. They 

found that the research funding in 2000 is related to the invention disclosure in 2002 and 

patent in 2004.  

 

Heher [55] suggested typical time-lags among disclosure, license, patent, license income 

and start-up in Figure 6.  



www.manaraa.com

 

33 
 

 

 

Figure 6: Typical phasing of the value chain [55] 
 

Thursby and Thursby [123] pointed out that more than 20% of disclosures at Stanford 

and the University of California System had been patented six years after disclosure. 

According to their findings, the most difficult part of measuring the time-lag is in 

licensing revenue. The top five inventions account for 76% of the license revenue of 

those universities. But the corresponding inventions were disclosed at least 10 years 

earlier. So, they excluded the licensing income from their model due to this issue. They 

found that total factor productivity (TFP) of license executed declined 1.7% per year. 

They explained the reason of negative growth could be lack of consideration of time-lags 

between disclosure and patent application and license agreements.  

 

Thursby and Kemp [122] in their study evaluating licensing performance of U.S. 

universities by DEA used 6-year average of the AUTM data and suggested that their 

result needs caution for interpretation because time-lags were not considered. 
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 Summary 2.2.6.

A. Conflicted perceptions on the roles and values of the licensing of academic 
research institutions 

There are a few studies discussing the relationships among teaching, research, and 

technology commercialization of universities. These studies show that there are some 

disagreements regarding the relationships among the three activities. Technology 

commercialization activity may have  both positive and negative impacts on teaching and 

research [99]. These complicated relationships and perceptions about the three major 

activities show that there is not a simple relationship among them. High research 

performance, for example, doesn’t necessarily mean good teaching and better technology 

commercialization. Some studies argue that one activity could even impede the other. 

This makes universities focus differently on teaching, research, and technology 

commercialization. Therefore, university technology commercialization should be 

incorporated in the university’s policies along with its missions and goals. 

 

B. Transfer Mechanism 

All technology transfer mechanisms mentioned by the literature are summarized in   

Table 7.  
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Table 7: Technology transfer mechanisms discussed in the literature 

Research 

Technology Transfer Mechanism 

Patent License 
Start-up / 
Spin-off 

Consulting Training 
Exchange 
Program 

McAdam, et al. [80]  X X    

Ndonzuau, et al. [86]   X    

Lee and Win [67]  X X X X X 

Perez and Sanchez [94]   X    

Lowe [71]  X X    

Mazzoleni [79] X X     

Libaers [69]   X    

Meyer [84]   X    

Siegel, et al. [28, 109-114] X X X    

Chapple, et al. [28]  X     

Anderson, et al. [6] X X X    

Thursby and Kemp [122] X X     

Markman, et al. [76, 77] X X X    

Powers [96] X X     

Mazzoleni [79] X X     

Bray and Lee [23]  X X    

 
 

C. Time-lags in licensing 

A time lag between university research and the commercialization of the resulting 

discovery is inevitable and is very important in assessing the performance of technology 

commercialization. Without considering the time lag, research on technology 

commercialization could lead to a misunderstanding of the university’s performance of 

the technology commercialization and influencing characteristics. However, there is not a 

quantitative study measuring the time-lags in licensing. 
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 Assessment of the Performance of University Technology Commercialization  2.3.

 

 Service Productivity Analysis 2.3.1.

Sherman and Zhu [108] surveyed 13 well-known techniques to measure and manage 

service productivity of the organization based on a literature review in the field of 

accounting, management control, and operations management. The benefits and 

limitations of those techniques in evaluating productivity of service are summarized in 

Table 8. 
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Table 8: Techniques for evaluating productivity of service organizations [108] 

Technique Strength Limitation 
Standard 
required 

Multiple 
aspects 

Standard Cost 
Systems 

Resolve most productivity 
issues with a good standard 
cost system. 

Focused on manufacturing 
rather than the service 
environment. Cost itself is 
not sufficient for 
productivity. 

Yes No 

Comparative 
Efficiency 
Analysis 

Good when there is no 
efficiency standard. 

Benchmark based on 
judgment, opinion, and past 
history. 

No Yes 

Ratio Analysis 
Adopt productive concept of 
input and output. 

Measures only a certain 
aspect of an operation. 

No No 

Profit and 
Return on 
Investment 
Measures 

Good to analyze business 
performance. 

Measures only capitalized 
asset. Cannot evaluate poor 
or outstanding productivity. 

Yes No 

Zero-base 
Budgeting 

Good when there are no 
comprehensive measures of 
profitability and no 
objective market prices. 

Could result in unexpected 
dysfunctional results such as 
bad service by focusing on 
budget. 

No No 

Program 
Budgeting 

Consider benefits of 
program with budget and 
provide a way to enhance 
productivity. 

Focus is only on budget as a 
way to improve productivity. 

No No 

Best Practice 
Analysis or 
Reviews 

Contribute to build service 
standard with various 
perspectives. 

Should compare similar 
units. No Yes 

Data 
Envelopment 
Analysis 

Highly objective and focus 
is on technical and scale 
efficiency. 

Excludes qualitative value. 
No Yes 

Peer Review 
Benefit from the knowledge 
of outside professionals. 

Subjective and depends on 
expert knowledge. 

No Yes 

Management 
Review and 
Audit 

More comprehensive than 
peer review. 

Subjective and depends on 
expert knowledge. No Yes 

Activity 
Analysis 

Define changes in job 
structure to make all units as 
efficient. 

Focus on employee time. 
No No 

Process 
Analysis 

Review details of process. Not applicable to 
organization whose activity 
could not be clearly defined 
as a process. 

No No 

Staffing Models 
Quickly assess the need for 
resources based on a 
projected level of activity 

Focus is only on human 
resources. Yes No 
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Generally, service organizations such as banks, hospitals and schools don’t have clear 

standard measurements to evaluate the performance of their operations [34]. Also, 

multiple perspectives should be considered for the evaluation. A good technique for 

evaluating productivity of service organizations should meet these criteria. Two review 

methods, peer review and management review and audit, also fit into this requirement, 

but they are not available if there are not proper experts. Table 8 shows that 

benchmarking techniques such as comparative efficiency analysis, best practice analysis 

or reviews, and DEA satisfy these requirements. Benchmarking is an appropriate and 

widely used approach to measure the productivity of those organizations.  

 

DEA, developed by Charnes, et al. [29], is a quantitative benchmarking technique applied 

in various areas. This technique is an excellent tool to measure and improve productivity 

of service business [108]. Therefore, DEA is used to measure efficiency of university 

activities. 

 

  Current Approach to the Evaluation of the Performance of University 2.3.2.

Technology Commercialization 

The literature assessing university technology commercialization can be categorized into 

five groups according their approaches: 

 Ranking the outputs of technology transfer [19], 

 Economic contribution and performance [23, 55], 

 Efficiency study using stochastic frontier estimation (SFE) [111], 
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 Efficiency study using data envelopment analysis (DEA) [6, 122, 123], 

and 

 Multi-stage model using both SFE and DEA [28]. 

 

One simple approach to assess the performance of university technology 

commercialization is to compare the major outputs such as number of patents, licensing 

income and number of start-ups of each university. Blumenstyk [19] discussed 

performance by rank of licensing income of U.S. universities based on the data published 

in the AUTM.  

 

Heher [55] evaluated the economic contribution to a university by using a combination of 

a university return on investment (ROI) model and a simple economic projection. The 

result shows that a positive range of return from an investment in research and 

technology commercialization can be gained in 10 years at the institutional level and 20 

years at the national level. 

 

The stochastic frontier efficiency (SFE) is a method developed by Aigner, et al. [4] and 

Meeusen and Van Den Broeck [83]. The method estimates an efficiency frontier by using 

the production function and estimates the production function parameters by using 

regression. The representative study using SFE was done by Sigel, et al. [111]. They 

evaluated technology commercialization efficiencies of 89 U.S. universities using AUTM 
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data from 1991 to 1996. They used licensing income for the dependent variable and three 

inputs such as invention disclosures, number of TLO staff, and legal fee for patenting.   

 

While SFE provides some benefits by allowing hypothesis testing and construction of 

confidence levels, DEA is used by other researchers [6, 122, 123]. The strength of the 

DEA analysis is that multiple inputs and outputs can be used in the DEA model, and 

DEA isn’t restricted by assumptions such as independence among independent variables 

[28]. Anderson, et al. [6] evaluated 54 high income universities in 2004. They used 

research expenditure for the input variable, and licensing income, number of licenses and 

options executed, number of start-ups, U.S. patents filed and U.S. patents issued for 

output variables. They also used the weighted value for patents issued over patents filed 

considering the relative importance of issued patents to filed patents. The result suggested 

that the total licensing income of 54 universities could be increased by $659 million 

considering efficient universities. Thursby and Kemp [122] used Malmquist indices, a 

DEA method, in order to trace efficiency change of university technology transfer from 

1991 to 1996. Thursby and Thursby [123] applied the three-stage process of the 

technology commercialization to the DEA model. The three corresponding DEA models 

for the stages were used to assess which input variables contributed to the growth of the 

outputs in each stage.  

 

Finally, some studies adopted the benefits of the SFE and DEA approaches [28]. They 

developed several stages, each applying SFE and DEA. For example, Glass, et al. [50] 
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evaluated the relative performance of technology commercialization of UK universities 

using both SFE and DEA. They developed a two-stage model. In stage one, they used 

DEA for initial evaluation of efficiency, and in stage two they decomposed efficiency 

from the first stage into environmental effects, managerial inefficiencies, and statistical 

noise. 

 

 Measuring the effectiveness of university technology commercialization 2.3.3.

Each university’s technology commercialization effectiveness is based on the 

performance evaluation of technology commercialization activity. Studies related to the 

effectiveness can be categorized into two groups. One is to analyze the financial benefit 

from several commercialization mechanisms and contribution to the organization. The 

second group is to understand and find characteristics related to the technology 

commercialization performance. 

 

Bozeman [21] suggested a contingent effective technology transfer model to organize the 

literature of technology transfer. He defined the impacts of technology transfer in terms 

of who is doing the transfer, how they are doing it, what is being transferred, and to 

whom. The five effectiveness criteria are out-the-door, market impact, economic 

development, political reward, and scientific and technical human capital. 

 

Bray and Lee [23] suggested that taking equity in a university’s start-up firm can give 

much higher financial return and reduce the time to get revenue compared to licensing. 
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Equity is a proper technology commercialization mechanism when the technology is not 

adequate for licensing. Also, TLO managers prefer equity since it provides them 

flexibility in making deals. According to their observations, the total equity value from 

16 university spin-offs was $1.4 million, while the average annual value of equity was 

$63.000 in 1996.  

 

Trune and Goslin [127] took a more quantitative approach to measure the effectiveness of 

ARITC by performing a profit and loss analysis. They evaluated 140 universities which 

received enough revenue from royalty payments to cover costs such as technology 

commercialization office cost, patent fees, legal expenses, and new research grants. They 

found that only 48.8% of these universities operated at a profit. The authors also pointed 

out that many universities do not operate technology transfer programs with a profit 

motive, but rather consider them as a necessary administrative function required to 

support faculty working on a research project with commercial potential.  

 

Another study evaluating the effectiveness of technology commercialization from the 

perspective of finance was done by Heher [55]. The author developed a forecasting 

model to estimate economic returns from the commercialization of university research 

using a combination of an institutional return on investment and an economic projection. 

He found that a portfolio of patents and licenses are needed to allow a university to 

receive reasonable probability of positive returns since the performance of a 

commercialized institution is highly variable and unpredictable.  
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Siegel, et al. [114] performed the most comprehensive survey on influencing 

characteristics in effective commercialization of university discoveries. One of their 

survey results suggests ways to improve the technology commercialization process as 

follows: 

 

 Universities and firms should devote more effort to developing a better 

mutual understanding. 

 Universities should align reward systems with UITT goals. 

 Universities should devote additional resources to UITT. 

 Universities should provide more education and community outreach to 

overcome informational and cultural barriers. 

 Universities should be less aggressive in exercising intellectual property 

rights. 

 

Markman, et al. [77] suggested a theory of the relationship between technology stage, 

licensing strategy, and transfer partner. They found that the most dominant licensing 

strategy was cash by 72 % of investigated universities. Equity and licensing exchange for 

sponsored research was 17% and 11% respectively. The structures included traditional 

university structure, for-profit private venture extension, and nonprofit research 

foundation. Their suggested theory built by ground study is presented in Figure 7. They 

aligned licensing strategy according to the technology stage and type of licensees. For 
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example, if a university’s discovery is at an early stage of development and has a low 

degree of technology resolution, a large firm is a good licensee. Sponsored research is 

proper for the licensing strategy.  

 

A newly disclosed invention has a wide range of technological maturity from its early 

state to the prototype, which is ready for commercialization. The different degree of 

maturity affects the licensing strategies of a university. According to the study by 

Markman, et al. [77], an invention in its early state of maturity is licensed for exchange 

of sponsored research, while equity is the preferred license strategy for proof of concept. 

Universities select the royalty as a licensing strategy for a technology in its prototype 

state.  

  

They also found that licensing strategies can be affected by a university’s mission and 

budget. 
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Figure 7: Association between technology stage, commercialization strategy, and the choice 
of licenses [77] 

 

However, those studies intend to improve the technology process or increase output, but 

they do not align or assess how the technology commercialization activity of a university 

fulfills its missions and goals.  

 

  Measuring efficiency of university technology commercialization 2.3.4.

 

The major difference between the two groups of studies, measuring the efficiency of 

university technology transfer and the technology licensing office (TLO), is how the 

variable of disclosure is used in the model. The study by Thursby and Kemp [122] used 

disclosure as an output variable to assess the efficiency of university technology 

commercialization, while two other studies, Siegel, et al. [111] and Chapple, et al. [28], 

defined it as an input variable for measuring the efficiency of the TLO. The reason can be 

found in the process of disclosing an invention and the role of the TLO. A 
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commercialization office can play a role, to some extent, in disclosing an invention, but 

university faculties have the authority to decide whether an invention will be disclosed or 

not [60]. Once a scientific discovery is disclosed for the purpose of technology 

commercialization, the technology licensing office takes over. The TLO’s responsibilities 

are to a) evaluate and valuate the disclosure; b) protect the technologies by patenting; c) 

sell licensing agreements to industry; and d) collect royalties and enforce contractual 

agreements with licensees [77]. Therefore, disclosure is an input variable when the 

objective of the model is to measure efficiency of the commercialization office [111]. On 

the other hand, disclosure should be considered as an output variable in the model for 

measuring the efficiency of commercialization activity in a university.  

 

Thursby and Thursby [123] suggested an intermediate input model with a three-stage 

process for ARITC in their study on whether the productivity of inputs or change in 

attitude of faculties and administrators toward the technology commercialization drove 

the increase of licenses.  They defined a disclosure as an output at the first stage and used 

it as an intermediate input at the second stage. The patent application was defined as an 

output at the second stage and the intermediating input at the third stage. However, they 

didn’t include the licensing income because of the complexity in the time-lag between the 

licensing income and other input variables. 

 

Variables regarding commercialization offices such as age and size could be considered 

as input variables for the model measuring the efficiency of a TLO. Both age and size of 
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the office are resources representing the experience of the office and effort of the 

university. Without considering other circumstances, increased age and size would be 

related to more output of commercialization activity. However, these effects and 

relationships should be considered as influencing characteristics but not input or output 

variables if the objective is to measure the UTCE. 

 

 

 Efficiency Scores of Technology Commercialization of U.S. Universities 2.3.5.

There are three studies [6, 113, 122] measuring efficiency of technology 

commercialization of U.S. universities. Two of them [6, 122] used DEA to measure the 

efficiency score of an individual university, while Siegel, et al. [113] applied SFE to 

study characteristics influencing performance. Therefore, the study with SFE didn’t 

provide individual efficiency scores of observed universities.  The efficient U.S. 

universities identified in two studies are listed in Table 9. However, the table requires a 

caution: different DEA methods, different years investigated, and absence of high 

performing universities in either of the two studies result in a significantly different list of 

efficient universities.   
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Table 9: List of efficient U.S. universities identified by different studies 

University 
Thursby and 
Kemp [122] 

Anderson, 
et al. [6] 

University 
Thursby and 
Kemp [122] 

Anderson, 
et al. [6] 

Univ. of Akron efficient N/A Univ. of Kentucky efficient N/A 
Univ. of Alabama 
Sys.: Birmingham 

efficient N/A Univ. of Maine Sys. efficient N/A 

Ball State Univ. efficient N/A 
Univ. of Maryland Sys.: 
Baltimore 

efficient N/A 

Boston Univ. efficient N/A Univ. of Miami efficient N/A 
Brigham Young 
Univ. 

efficient efficient Michigan State Univ. efficient inefficient 

Univ. of California 
Sys. 

N/A efficient 
Massachusetts Ins. of 
Tech. 

efficient efficient 

California Inst. of 
Tech. 

efficient efficient New Hampshire Univ. efficient N/A 

Carnegie Mellon 
Univ. 

efficient inefficient Univ. of New Orleans  efficient N/A 

Univ. of Central 
Florida 

efficient N/A NJ Inst. of Tech. efficient N/A 

Univ. of Chicago efficient N/A 
North Carolina State 
Univ. 

efficient inefficient 

Colorado State 
Univ. 

efficient N/A 
North Dakota State 
Univ. 

efficient N/A 

Columbia Univ. efficient N/A Northeastern Univ. efficient N/A 
Cornell Univ. efficient inefficient Northern Illinois Univ. efficient N/A 
Univ. of Dayton efficient N/A New York Univ. N/A efficient 
Univ. of Denver efficient N/A Ohio Univ. efficient inefficient 
Duke Univ. efficient inefficient Univ. of Oregon  efficient N/A 
Emory Univ. efficient N/A Penn State Univ. efficient N/A 
Florida Atlantic 
Univ. 

efficient N/A Princeton Univ. efficient N/A 

Florida State Univ. efficient inefficient Univ. of South Alabama efficient N/A 
Georgetown Univ. efficient N/A Univ. of South Florida efficient N/A 
Univ. of Georgia  efficient inefficient Stanford Univ. efficient inefficient 
Georgia Inst. of 
Tech. 

efficient efficient Temple Univ. efficient N/A 

Harvard Univ. efficient inefficient Tulane Univ. efficient inefficient 
Univ. of Illinois 
Sys.: Urbana-
Champaign 

efficient N/A Tulsa Univ. efficient N/A 

Illinois Inst. of 
Tech. 

efficient N/A Utah Univ. efficient N/A 

Illinois State Univ. efficient N/A Wake Forest Univ. efficient inefficient 

Indiana Univ. Sys. efficient N/A 
Washington Univ. in St. 
Louis 

efficient inefficient 

Iowa State Univ. efficient N/A 
Univ. of Wisconsin Sys: 
Madison 

inefficient efficient Johns Hopkins 
Univ. 

efficient inefficient 
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Both of the studies used the variable returns-to-scale (VRS) method. Thursby and Kemp 

[122] identified 54 efficient universities out of 112, which was 67%, while  the Anderson, 

et al. [6] study found 7 efficient universities out of 54, which was 13%. Four universities, 

Brigham Young University, California Institute of Technology, Georgia Institute of 

Technology, and Massachusetts Institute of Technology, were identified as efficient by 

both studies.   

 

Thursby and Kemp [122] also examined changes of the efficiencies from 1991 to 1996 

using the Malmquist Index. Fifty seven out of 112 universities were analyzed, excluding 

55 universities which didn’t respond to the survey during some years. The efficiencies of 

the 57 universities had increased during the period.  

 

 Summary 2.3.6.

A. Current approaches measuring licensing performances 

University technology commercialization has been an emerging research area since the 

mid 1980’s, when the Bayh-Dole Act began facilitating interaction between university 

and industry. Many public and private universities instituted technology licensing offices 

(TLOs) in their organizations and achieved quantitative growth in commercialization 

through licensing and founding new firms.  

 

A handful of studies have been conducted figure out how to evaluate this performance 

and understand the nature of technology commercialization in universities. Majority of 
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these studies focused on benchmarking commercialization performance of universities 

with major outputs such as licensing income, start-ups, and patents using stochastic 

frontier efficiency (SFE) or data envelopment analysis (DEA). Some of them examined 

organizational and external characteristics directly or indirectly influencing the 

performance of technology commercialization. However, relatively fewer studies have 

been done on how these recently increasing commercialization activities are related to the 

missions or policies of universities. 

 

B. Licensing performance 

Most studies on performance assessment of ARITC and TLO evaluate their relative 

performance. Their detailed research methods and findings are summarized in Table 10. 

The study by Thursby and Kemp [122] used DEA model of eight input and five output 

variables. Their model defined 54 efficient universities out of 112, which is about 50%. 

The number of efficient universities is due to much higher variables (model dimension). 

Therefore, caution is needed when input and output variables are designed for a DEA 

model.   
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Table 10: Measuring efficiency of university technology commercialization and the 
commercialization office 

Research University Method Input Output Finding 

Thursby 
and Kemp 

[122]* 
 
 

112 U.S. 
universities 

DEA TLO size 
Federal support 

Bio. faculty 
Eng. faculty 
Phys. faculty 
Bio quality 
Eng. quality 
Phys. quality 

Industry 
support 

Royalties 
Disclosures 
New patent 

app. 
Licenses 

Expansion of frontier is 7.5% 
while catch-up of inefficient 

universities is only 0.4%. 
Suggesting the expansion of 

the frontier stems from a 
change in the 

commercialization 
environment involving a 

reallocation of inputs, a change 
in market demand TLOs. 

Anderson, 
et al. [6]* 

57 U.S. 
universities 

DEA Research 
expenditure 

License 
income 

Licenses 
executed 
Start-up 

U.S. Patents 
filed 

U.S. Patent 
issued 

DEA can effectively be used as 
a productivity evaluation tool 
to assess ARITC efficiency. 
Private universities are more 

efficient than their public 
counterparts in terms of 

technology commercialization. 

Thursby 
and 

Thursby 
[123] 

64 U.S. 
universities 

DEA 
(3 stages) 

Stage 1: 
Federal and 

industry support 
TLO personnel 

Stage 2: 
Disclosures 

Faculty quality 
Stage 3: 

Disclosures 
Patent 

applications 

Stage 1: 
Disclosures 

 
Stage 2: 
Patent 

applications 
 

Stage 3: 
License and 

option 
agreements 

The increased positive attitude 
of faculty and administrators to 

the technology 
commercialization increased 

the number of licenses. 

Siegel, et 
al. [111]** 

80 U.S. 
universities 

SFE Disclosures 
TLO Size 
Legal Fees 

License 
agreements 
Licensing 

income 

Larger TLO staff is related to 
more licensing agreements but 

less licensing revenue. 

Chapple, et 
al. [28]** 

98 UK 
universities 

DEA 
SFE 

Research 
income 

Disclosures 
TLO Size 
Legal Fees 

Licensing 
income  
License 

agreements 

TLOs exhibit low levels of 
absolute efficiency and they 
need to be reconfigured into 
smaller units. TLOs need to 

upgrade the business skills and 
capabilities of U.K. TLO 

managers and licensing office. 

 
Note: * =  Studies assessing relative performance of the ARITC; ** = Studies assessing the relative 

performance of the TLO  
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 Characteristics Influencing to Licensing Performance 2.4.

 University Characteristics and Technology Commercialization 2.4.1.

A study [95] investigating the effect of university characteristics on faculties’ interaction 

with industry indicated that a certain level of university characteristics affect the behavior 

of the faculties. For example, more industry R&D funds increased faculties’ interaction 

with industry, and also recruited more master’s students by grants. More funds also 

decreased the positive effect of affiliation with a university research center on the 

interaction with industry. The academic qualities of universities were negatively related 

to the interaction with industry. This study shows that university characteristics indirectly 

affect the technology commercialization activity. 

 

The results of current studies regarding the effect of university characteristics mostly 

failed to identify their significant influence, or their results were not consistent. The 

studies used the characteristics as control variables or independent variables. They failed 

to understand how those university characteristics influence the performance indirectly. 

Universities in different organizational situations set their technology transfer 

organization, licensing policy, and strategy differently, which directly influence the 

operation of technology commercialization. Therefore, university characteristics such as 

technology licensing office, licensing policy and strategy are expected to indirectly 

influence the technology commercialization performance. 
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A. Mission and goal of a university 

As technology commercialization activity becomes more intensive, universities seem to 

have a dilemma between two different goals. Nelson [87] pointed out that the traditional 

goal of a university is to provide advanced scientific knowledge to the public for various 

benefits as a service organization, but instead universities began to act like profit 

organizations, making money from their knowledge. The different views of transferring 

their knowledge are applied to their missions and goals, which then influence technology 

commercialization activities. The operations of ARITC depend on the policy and strategy 

at the highest level of the universities. Their priorities are influenced by other 

organizational characteristics [24]. Studies on the impact of commercialization activity 

on the university mission are rare. Most studies on this issue discuss the relationships 

among university mission, policy and performance of commercialization, or selection of 

a transfer mechanism [9, 28, 77, 87, 115, 132, 133].   

 

The policy of commercialization is another important organizational characteristic such 

as the reward system toward faculty’s contribution to commercialization, and licensing 

strategy favorable to university policy. This affects the responsibilities and structure of 

the TLO. For example, TLOs of most universities have traditional structure, which places 

the office under the university organization [77]. The responsibilities and roles of the 

director of a commercialization office in this type of university are limited, and a vice 

provost or vice president has more responsibilities for commercialization activities. They 

will establish and operate the office in line with the university’s objective [114].  
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Therefore, the university’s mission and goal toward the technology commercialization 

are indirectly related to technology commercialization performance by setting TLO, 

licensing policy and strategy differently. 

 

B. Public vs. Private Universities 

The public or private status of a university has been an interesting topic to researchers 

regarding technology commercialization. There are basic differences between the two 

types of universities in terms of income sources and operational flexibility.  The private 

universities are more dependent on student fees, gifts, and research grants and contracts 

than public universities [1].  

 

According to Powers [96], the level of state support for public universities influences 

both public and private universities with unexpected directions. Well-supported public 

universities do not have as much pressure to find extra revenue sources. Therefore, 

technology commercialization activities have not been focused as an additional budget 

source. In regards to the economic condition, Powers explained that increased state 

support results from a state’s good economic situation. Thus, private universities would 

have the benefits of getting more opportunities of technology commercialization. Also, 

the demand of students on public universities with good state support was getting high, 

which resulted in high financial pressure on private universities. Therefore, private 

universities enforced technology commercialization.  
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The study also investigated the effect of industry and federal R&D support on technology 

commercialization which influenced only patents, with no significant effect on license 

agreements and license income. Federal sponsorship was typically granted for basic 

studies, which had fewer opportunities for industry application and thereby less relevance 

to licenses.  

 

On the other hand, the study done by Lach and Schankerman [64] is remarkable. They 

studied the influencing characteristics of university technology commercialization in 

terms of private vs. public. Their results are summarized in Table 11. Royalty shares of 

both public and private universities influenced licensing income positively, and the public 

and private status itself didn’t influence licensing income. Private universities were more 

influenced by TLO age than public. Private universities exploited the local high-tech 

density more than the public. There was no difference between public and private in the 

effect of research orientation. Faculty size was positively related to license income in 

both public and private universities, but there was no difference between the two groups 

of universities. 

 

Table 11: Influencing characteristics and university status 

Output 

Effect of characteristics for public and private 

Royalty 
share 

TLO size TLO age 
Local high-
tech density 

Technology 
fields 

Faculty 
size 

Licensing 
Income 

Public (+) 
Private (+) 

Public (NE) 
Private (+) 

Public (NE) 
Private (+)  

Public (+) 
Private (+) 

Public (NE) 
Private (NE) 

Public (+) 
Private (+) 

 
Note: NE =  no effect 
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Regarding the relationships between public/private status and the performance of 

university technology commercialization, current studies show two findings. First, there 

were three studies [6, 111, 122] that compared public and private universities in terms of 

technology commercialization efficiencies. All of them indicated a negative relationship 

between public universities and efficiencies of technology commercialization activities. 

Therefore, private universities are expected to perform technology commercialization 

activity more efficiently. Second, other researchers [76, 96, 111] studying the relationship 

between commercialization outputs and public or private status showed that private 

universities had more license agreements and income.  

 

Therefore, the public or private status of a university is expected to indirectly influence 

the technology commercialization performance depending on other characteristics. 

 

C. Universities with medical schools 

Trune and Goslin [127] in their 1998 study of financial profitability and loss of university 

technology commercialization in the U.S. found that only 68 (40.5%) out of 168 

institutions (140 universities and 28 hospitals) received enough royalties to make up for 

the operation costs of their commercialization offices. Baldini, et al. [11] found a weak 

but positive relationship between medical schools and patents, while Powers’s  [96] study 

concluded no relationship. In case of licenses of UK institutions, Chapple, et al. [28] 

found positive relations with the presence of medical schools. Siegel, et al. [111] and 
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Anderson, et al.’s [6] studies showed a negative relationship but statistically insignificant 

when U.S. universities were explored.  

 

D. Academic prestige 

The highly qualified scientists and engineers of universities are important mediums of 

technology transfer [104]. Hicks, et al. [57] studied the relationship between patents in 

the area of technology development and the quality of university research. They found 

that U.S. research papers which are in the top 1% of cited papers, are much more cited by 

U.S. patents. They emphasize the importance of excellent science in universities because 

mediocre research would contribute to neither science nor innovation. While most TLOs 

have failed to gain a significant income, only the universities with high prestige had 

received multi-million dollar incomes from their licensing [100]. 

 

Therefore, it can be assumed that recognized academic prestige is linked to higher 

research quality and more research funds. Hence, it indirectly influences the outcomes of 

technology commercialization. 

 

E. University size 

Studies on the influence of university size are rare. Baldini, et al. [11] studied the impact 

of university size on technology commercialization outcomes by logistic regression. They 
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measured the size by the total budget of a university and found that the size of a 

university is positively related to the patent but is not statistically significant.  

 

Therefore, the size of a university is expected to be indirectly related to the relative or 

absolute performance by influencing TLO and IP policy. 

 

 Technology Licensing Office (TLO) 2.4.2.

The technology licensing office (TLO) plays an important role as a facilitator of 

technology commercialization within a university, as well as an intermediary outside of 

the organization. The TLO fills the gap among university, industry and government [99]. 

However, some problems in TLOs and related barriers have also been identified in the 

literature [96, 110, 113, 114, 136].  

 

Among those studies, Yusuf [136] listed three difficulties regarding TLOs. The first 

barrier is the lack of marketing skills of TLOs. The second is poor links between 

universities and companies. The third is the difficulty in developing an embryonic 

technology further and finding the proper market place of the technology. A well-

organized process of technology commercialization could help to overcome these 

limitations. Thus, the TLO, business incubators, and science parks play important roles in 

transferring university knowledge to industry [72, 77, 107, 111, 114, 115, 128].   
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A. Size and age of TLOs 

There have been some studies examining the effect of experience and intensity of TLOs 

by looking at their size and age. While all the studies of TLO size [64, 76, 96] showed a 

positive effect on the outcomes of technology commercialization, there were 

inconsistencies in the results of the effect of a TLO’s age.  

 

Siegel, et al. [111], Powers [96], and Lach and Schankerman [64] found positive 

relationships between the age of a TLO and licenses. On the other hand, Markman, et al. 

[76] found a weak negative effect of the age of a TLO on the number of licensing 

agreements but a positive effect on the starts-up. Chapple, et al. [28] also found that the 

increased age of a TLO was related to less licensing activities. However, these studies 

showing negative relationships were not statistically significant.  

 

A university’s effort to enhance technology commercialization activity by increasing a 

TLO’s size could improve the performance of technology commercialization. Most 

studies showed a positive impact of TLO size on the license activities [11, 64, 76]. 

 

B. TLO structure 

The structure of the TLO is another important characteristic. The functions of the TLOs 

are limited to IP protection and licensing contracts if they are under the traditional 

organization structure [77]. Some extended forms of TLOs, as well as public institutions, 
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have been instituted to overcome these limitations. These intermediary organizations 

could facilitate the linkage between a university and industry [63]. 

 

A new organization called a proof of concept center established by MIT and UCSD was 

introduced by Gulbranson and Audretsch [54]. The centers were to facilitate the 

technology commercialization by funding excellent research in its early state, and 

promoting a collaboration network for the research. They found that their success 

depended on the skill and social network structure of the staff. The knowledge integration 

community (KIC) is also another organization that the Cambridge-MIT institute 

developed to improve knowledge sharing between universities and industry [3].  

 

Markman, et al. [77]  studied how TLOs were housed and how those structures were 

related to licensing strategies. They studied 128 U.S. universities. The results indicated 

that 52% conformed to the traditional structure, 41% had nonprofit research foundations, 

and only 7% were for-profit venture extensions.  The result of their correlation analysis 

between the structures and licensing strategies is presented in Table 12. Sponsored 

research was positively related only to the traditional structure. The licensing for cash 

strategy, which was the most preferable commercialization strategy, was negatively 

related to a for-profit structure. 
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Table 12: Correlation between TLO structures and licensing strategies [77] 

TLO structure Startups 
Startups in 

process 
Sponsored 
research 

License for 
cash 

License for 
equity 

Traditional - (SI) - (SI) + + (SI) + 
Non profit + (SI) + (SI) - - (SI) + (SI) 

For profit extension + + - (SI) - + 
 
Note: SI = statistically insignificant 

 

Therefore, characteristics regarding a TLO such as size, age, and structure are expected to 

directly influence the commercialization performance.  

 

C. Licensing Policy and Strategy 

The mission of a university drives its TLO to pursue different licensing policies and 

strategies. Based on their literature review, Djokovic and Souitaris [38] suggested that the 

quantity and quality of start-ups are related to the institutional structure and strategic 

objectives of universities and TLOs. Gopalakrishnan and Santoro [52] also found that the 

university supporting systems such as the policy for IPR, patent protection, ownership 

and licensing facilitate both knowledge and technology commercialization of university 

research. 

 

Some universities may consider technology commercialization activity and related IP 

protection as a way to contribute to regional economic growth and knowledge diffusion, 

while others emphasize licensing revenue from patenting their technologies [130]. Most 

universities are inclined to grant exclusive licenses and obtain more revenue from them. 

Stanford University, for example, reserves rights for both commercial and 
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noncommercial research so that the university contributes to further research for both 

other institutions and itself [61].  

 

Three licensing strategies, cash, licensing exchange for sponsored research and equity, 

are identified. Markman, et al. [77] in their theory of the relationship among technology 

stage, licensing strategy and transfer partner suggested that licensing strategies should be 

aligned according to the technology stage and type of licensees. The study also indicated 

that most universities selected the strategy of licensing for cash more than the other two 

strategies. 

  

Therefore, licensing policy and strategy will affect the technology commercialization 

operation and its performance, but they should be understood within the organizational 

contexts. 

 

 Faculties and managers in the TLO 2.4.3.

Personal skill levels, training and experience are very important characteristics because 

technology or knowledge transfer is a human-embodied activity [22]. Two major 

personal players in commercialization activity, university researchers and managers of 

TLOs, are identified in the literature. 

 

The faculties producing a new invention and the practitioners in the TLO are the main 

entities for transferring the technology to industry. Faculties have an important role even 
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after an invention is disclosed, by conducting further research and development of the 

invention. Some of them also become the entrepreneur of a venture using the technology. 

Powers [96] found that better faculty quality influenced more patents, licenses, and 

licensing income. Lach and Schankerman [64] studied the relationship between the 

number of faculties and licensing income in public and private universities. Their results 

showed that in both private and public universities, more faculties were related to more 

technology commercialization activity.  

 

The faculty’s interaction with industry was also identified as an important characteristic 

in the studies [95, 113, 114]. Faculties with more personal relationships with companies 

had more opportunities to get sponsored research and cooperate more actively during the 

commercialization process. Martinelli, et al. [78] studied faculties’ relationships with 

industry through a case study of Sussex University in which a considerable number of 

researchers were involved in technology commercialization activities despite its late start 

in commercialization activity. They found that more faculties in life science, science and 

engineering departments interacted with industry than those in the humanities and social 

sciences. There were also differences in the way faculties in life sciences and science and 

engineering interacted with industry. Faculties of life sciences linked to industry though 

collaborative research, while faculties in science and engineering preferred consultancy 

agreements. 
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Regarding personnel in TLOs, Chapple, et al. [28] and Siegel, et al. [111] found that their 

business skills were important and needed further improvement. Their marketing skills 

promote licensing by introducing a new invention to a firm and being able to take a good 

position in negotiations. More specifically, Colyvas, et al. [32] suggested that an 

invention which is less attractive to industry requires more active marketing. Industry 

actively monitors university inventions through networks in the scientific community, 

and thus acquires promising and interesting academic inventions through those channels 

rather than the commercialization office.  

 

Faculties and managers in the TLOs are the major stakeholders who facilitate the 

technology commercialization events. Therefore, their expertise and quality are expected 

to directly influence the performance of the university technology commercialization. 

 

 Environmental Characteristics 2.4.4.

A few studies identified the relationship between the environmental characteristics and 

the technology commercialization performance. Those characteristics are categorized as 

industry and government support in terms of supporting start-up and funding university 

research, the local economy, and high-tech activity in a state.  

 

A. Venture capital and entrepreneurial climate of a state 

Powers [96] performed a comprehensive study of the effects of external environmental 

characteristics on the technology commercialization performance by using regression 
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models, which used patents, number of license agreements and license income as 

dependent variables. He found that venture capitalization of a state was positively related 

to the number of licenses, but had a negative relationship with the licensing income of the 

universities. He explained that the strategy of technology commercialization of the 

universities caused the different relationship. The universities with weak venture capital 

in the state would try to find opportunities for technology transfer from well-established 

companies which would contribute to the greatest income in the short term. On the other 

hand, universities with good venture capital would transfer their technologies to small 

companies, yielding a small licensing income.   

 

The second external characteristic, the entrepreneurial climate of a state, related 

positively to the number of license agreements. Powers explained that universities with a 

healthy entrepreneurial climate, meaning they may have good opportunities for licensing 

to small companies, got small but better technology transfer opportunities than 

universities with a weak climate. Finally, the study found that strong state support of 

higher education was negatively related to licensing income of public universities, but 

positively related to income of private universities.  

 

B. Industry and government support 

More sponsored research could result in more scientific inventions, where the university 

technology commercialization process begins. Therefore, both in industry and 

government, sponsored research would be related to the positive performance of 
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technology commercialization. However, they are expected to influence the individual 

outcomes in different ways.  Government sponsored research tends to focus on basic 

research, while companies want to invest in applied science or the development of a 

mature technology that is ready to commercialize, which helps to solve their technical 

problems. As a result, the research output of federally sponsored research may tend to 

stay in the early state of maturity and result in patents. On the other hand, industry 

sponsored research may have a higher likelihood of producing more license agreements 

and income. Powers [96] in his empirical study indicated that both of them are positively 

related to the number of patents, but have no relationship with licenses or income. 

Boardman and Ponomariov [20] showed that government funded research was also 

positively related to the more active interaction between university researchers and 

industry. However, this study didn’t show if their interactions actually resulted in any of 

the technology commercialization outcomes. 

 

Therefore, more organizational characteristics should be considered to find their impact 

on the technology commercialization performance. 

 

C. R&D intensity of a state and local economy 

Wright, et al. [95] studied the technology commercialization of universities located in 

areas of average  R&D intensity and economic activity in the UK, Belgium, Germany, 

and Sweden.  They suggested that those universities should generate world-class research 

and critical mass in certain areas of expertise. Chapple, et al. [28]  found that the regional 
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economy positively influenced the licensing income and number of license agreements, 

but license agreement was not statistically significant.   

 

In most related studies, the environmental characteristics were considered as control 

variables in the models because of their exogenous nature in technology 

commercialization. These variables are not expected to be directly linked to the 

commercialization performance. However, the situation in which the universities are will 

influence the performance. Therefore, both direct and indirect relationships should be 

examined along with university characteristics.  

 

Current studies of the external characteristics are summarized in Table 13. 
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Table 13: External characteristics from the literature 

Research Characteristics Influence 

Chapple, et 
al. 2005 
[28]* 

 Regional GDP 
+(SI, LICENSES) 
+(INCOME) 

 Regional R&D intensity of industry firms 
+(LICENSES) 
-(SI, INCOME) 

Powers, 
2003 [96] 

 Entrepreneurial climate within a state  
+ (SI, LICENSES, 
INCOME) 
-(SI, patent, INCOME) 

 The level of venture capitalization within 
a state 

- (LICENSES, INCOME) 
+(SI, patent) 

 State support for (public) higher 
education 

- (for public Univ.) 
+(for private Univ.) 

 Federal and industry R&D support 
+(patents) 
O(LICENSES, INCOME) 

Baldini, et 
al. [11]** 

 Geographical locations (in terms of 
degree of industrialization) 

+(SI, patent) 

Lach and 
Schankerm
an [64] *** 

 Geographical locations (in terms of 
degree of high-tech activities, public vs. 
private) 

+( INCOME, Public < 
Private) 

 
Note: SI = statistically insignificant, + =  positive relation, - = negative relation, M = mentioned as 

important by the survey, LICENSES = number of license agreements, INCOME = license income 

* = U.K. universities were studied. 

** = Italian universities were studied. 

*** = U.S. and Canadian universities were studied 

 

 Summary 2.4.5.

Internal characteristics and influences on technology commercialization identified by the 

literature are summarized in Table 14, Table 15, and Table 16. 
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Table 14: Organizational characteristics related to university technology commercialization 
from the literature 

Research Characteristics Influence on TT 

Anderson, 
et al. [6] 

 Presence of a medical school -(SI, efficiency of TT) 

 Public (vs. private) -(efficiency of TT) 

 Siegel, et 
al. [111]  

 Presence of a medical school 
-(SI, LICENSES, SFE)  
+(SI, INCOME, SFE) 

 Public (vs. private) 
- (SI, LICENSE, SFE) 
- (SI, INCOME, SFE) 

 TLO age 
+(SI, LICENSES, SFE) 
+(INCOME, SFE) 

 TLO size 
-(LICENSES, SFE) 
+(SI, INCOME, SFE) 

 Mutual understanding between university and 
corporation 

M 

 Reward system for researchers M 

 Skill of TLO  M 

 Less aggressive attitude toward intellectual right M 

 Low degree of bureaucracy and flexibility of university 
administrators 

M 

 Personal relationship  between university and company  M 

 Powers 
[96] 

 Presence of a medical school  -(SI, patent) 
+(SI, LICENSES, INCOME)  Presence of engineering school 

 Public (vs. private) 
+(SI, patent) 
-(SI, LICENSES, INCOME) 

 TLO age 
+(patent, LICENSES) 
+(SI, INCOME) 

 TLO size 
+(SI, patent) 
+(LICENSES, INCOME) 

 Quality of faculty 
+(patent, LICENSES, 
INCOME) 

Thursby, et 
al. [121] 

 Early development stage of disclosure (proof of 
concept without prototype or with lab scale) 

+(INCOME, frequency of 
sponsored research) 

 Number of disclosures +(LICENSES, patent) 

 Presence of a medical school +(SI, LICENSES) 

 TLO size +( LICENSES) 

 Licenses 
+(INCOME, sponsored 
research tied to license) 

Decter, et 
al. [36] 

 Communication and stronger relationship M 

 Greater availability of experienced personnel in TLOs M 

 Less bureaucracy of university administration M 

 Greater autonomy of TLO M 

 
Note: SI = statistically insignificant, + = positive relation, - = negative relation, M = mentioned as 

important by the survey, LICENSES = number of license agreements, INCOME = license income 
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Table 15: Organizational characteristics related to university technology commercialization 
from the literature (continued) 

Research Characteristics Influence on TT 

 Markman, et 
al. [76] 

 Public (vs. private) 
-(LICENSES) 
-(SI, Start-up) 

 TLO age 
-(SI, LICENSES) 
+(Start-up) 

 TLO size +(LICENSES, Start-up) 

 TLO structure (traditional within university 
structure) 

-(LICENSES, Start-up) 

 TLO structure (for profit) 
-(SI, LICENSES) 
+(SI, Start-up) 

 Chapple, et 
al. [28]* 

 Presence of a medical school 
+(SI, LICENSES) 
-(INCOME) 

 TLO age 
-(LICENSES) 
-(SI, INCOME) 

 TLO personnel’s skill in business M 

Thursby and 
Kemp [122] 

 Faculty quality (bioscience, input variable) -(efficiency of TT) 

 Faculty quality (engineering, input variable) -(efficiency of TT) 

  TLO size (input variable) -(efficiency of TT) 

 Presence of a medical school -(efficiency of TT) 

 Public (vs. private) -(efficiency of TT) 

Baldini, et al. 
[11]** 

 University size (measured by the budget; most of 
the budget used for salaries) 

+(SI, patent) 

 Presence of a medical school +(SI, patent) 

Lach and 
Schankerman 
[64] *** 

 Royalty share to inventors (public vs. private)  
+(private, Income) 
+(SI, public, Income) 

 Incentive effect (public vs. private) +(Income, both) 

 Faculty size (public vs. private) +(Income, public=private) 

 Faculty quality  +(SI, Income) 

 TLO size and age (public vs. private) +(Income, Public<Private) 

Friedman 
and 
Silberman 
[47] 

 TLO age 

+(License generating 
income, Licenses with 
equity, Income) 
+(Start-up) 

 Public (vs. private), presence of a medical school (SI, All) 

 
Note: SI = statistically insignificant, + =  positive relation, - = negative relation, M = mentioned as 

important by the survey, LICENSES = number of license agreements, INCOME = license income 

* = U.K. universities were studied. 

** = Italian universities were studied. 

*** = U.S. and Canadian universities were studied 
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Table 16: Organizational characteristics related to university technology commercialization 
from the literature (continued) 

Research Characteristics Influence on TT 

Gopalakrishnan 
and Santoro 
[52] 

 Stable & direction-oriented culture +(TT activity)  

 Flexible & change-oriented culture +(TT activity) 

 Firm’s trust of university partner +(TT activity) 

 Support systems (policy for IPR, patent 
protection, ownership and licensing 

+(TT activity) 

Arvanitis, et al. 
[7] 

 Applied research -(LICENSE) 

 Engineering 
+(patent) 
-(SI, LICENSE) 

 Natural science 
+(patent) 
-(SI, LICENSE) 

 Medicine 
+(patent) 
-(SI, LICENSE) 

 Teaching 
-(LICENSE) 
+(Start-up) 

 
Note: SI = statistically insignificant, + =  positive relation, - = negative relation, M = mentioned as 

important by the survey, LICENSES = number of license agreements, INCOME = license income 

  

Characteristics influencing licensing performance identified from literature are 

summarized by technical, organizational, personal, and external environmental 

perspectives in Table 17. 
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Table 17: Summary of the characteristics influencing licensing performance 

Perspective Category Characteristics 
Technical Disclosure Development state of discovery 

Organizational 

University 

Universities mission and goals 

An Institution’s Private or Public Status 

The existence of Medical school 
Academic prestige 
University size (budget) 

TLO 
Size  
Age 
Structure 

Licensing 
Policy 

Non-exclusive 
Exclusive 

Licensing 
strategy 

Licensing for cash 
Licensing for equity 
Licensing for sponsored research 

Personal People 
Faculties’ relationship with industry 
Faculty quality 
TLO personnel’s skill 

External 
Environmental 

Support 
Federal R&D support 
Industry R&D support 

Economy Regional GDP 
High-tech 
activity 

Technical intensity 

 

 Process and Influencing Characteristics of Academic Research Institution 2.5.

Technology Commercialization 

In this section, the academic research institution technology commercialization (ARITC) 

process and its structure of input and output variables are defined. Characteristics which 

are suggested to be influencing the ARITC performance in the literature are discussed.  
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 ARITC Process 2.5.1.

A number of researchers [15, 91, 107, 123] emphasized that academic research institution 

technology commercialization (ARITC) should be understood as several distinct stages 

rather than occasional events of a sequential process. Parker, et al. [91] defined ARITC 

stages by functions of a technology commercialization office (TLO) contributing to net 

income: discovery, development, manufacturing, and marketing. They understood a 

TLO’s operation as similar to the process of product development of a manufacturing 

company.  

 

ARITC is a multi-stage process which should be the defined by the functions of TLO, 

outcomes of ARITC, and resources and characteristics involved. The multi-stage view of 

TLO functions can provide deep insight into ARITC practices and, thereby, suggest 

approaches to improve their processes along with other influencing characteristics. In this 

study, the ARITC process suggested by Kim, et al. and Anderson, et al. [6, 62] are 

adopted as shown in Figure 8. The research expenditure is the measure of research 

activity which yields technologies for the potential licensing. This includes both private 

and public research funds. The first step of commercialization of the technology is for a 

faculty or researcher to disclose their invention through the TLO. Then, the TLO 

proceeds with patenting after evaluating the value of the technology. Licensing can take 

place at any stage from disclosure by different commercialization methods such as an 

exclusive or non-exclusive licensing, and start-up. Finally, licensing income is the result 

of the licensing agreements or equity from a start-up company throughout multiple years. 
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These processes include different paths and time-lags among the commercialization 

stages. 

 

 

Figure 8: ARITC Process [6, 62] 

 

 Definition of the ARITC Activity 2.5.2.

A. Research expenditure 

Research support from government, industry and faculties is an important resource for 

research which yields inventions (sources of disclosures). Jensen and Thursby [59] 

indicated that 63% of inventions were funded by the federal government, 17% by 

industry and 20% unsponsored. Less than half of them were licensed, and only 31% of 

licenses were either exclusively or nonexclusively used in the field. Scientific inventions 

by faculties are important resources of technology commercialization. There is no doubt 

that more and better quality disclosures about the inventions result in a higher possibility 

of technology commercialization success. Therefore, research expenditures are inputs of 

the ARITC process. 
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B. Disclosure 

The first step of the commercialization is to evaluate and screen the valuable inventions 

created by faculties. TLOs actively seek and identify university scientists and their ideas 

which are potentially marketable. TLOs encourage faculties to disclose their research 

results if they consider the inventions to be valuable to the market.  

 

TLO size is a resource influencing the performance at this stage. The complexity of the 

invention and the willingness of the inventor play important roles in helping TLO 

personnel determine the potential of the invention [91]. TLO personnel’s contact with the 

inventors is important to seek related information and encourage them [115] [91]. 

Therefore, the bigger the TLO, the more opportunities to find new inventions, and 

thereby more inventions may be disclosed.  

 

Faculties’ relationships with industry and the personalities of entrepreneurs result in more 

disclosures from their research and higher success of commercialization. They should be 

understood as characteristics influencing research, disclosures, or any other output 

variables.  

 

The TLO skills of identifying applications and market potential are important at this stage. 

Technology commercialization is more challenging if the disclosure is oriented to the 

basic research. For example, Palmberg [90] found that Finnish university researchers and 



www.manaraa.com

 

76 
 

companies had different perceptions of nanotechnology. The problems came from the 

identification of commercial applications and the low business skills of university 

researchers for a technology which is immature and uncertain. 

 

Tornquist and Kallsen [126] suggested that universities with more resources, a longer 

history of applied research, and higher faculty salaries produce results which better fit 

industrial needs. They also found that higher quality universities with excellent faculties 

generate more suitable research results for commercialization.  

 

C. Patent 

The TLOs yield both patents filed and issued from disclosures. TLOs perform more 

detailed evaluation of the disclosures for market potential and legal protection, and they 

submit patent applications. Not all of the disclosures are secured by patents because of 

the cost of securing IP [39, 115]. Therefore, TLOs assess the market potential and value 

for technology commercialization of the disclosures. A more formal and detailed 

evaluation process focusing on marketability and return on invest is applied at this stage 

than in the previous stage.  

 

Most universities file patent applications and recover legal fees from license agreements 

once they recognize the disclosures are worth the investment, while some do not file until 

they find a licensee [91]. At this stage, TLOs tend to find a potential licensee and 

investigate market potential in more detail to avoid sunk costs of legal fees. Unreasonable 
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transaction costs for holding patents would make an institution unprofitable to transfer 

the technologies [89]. Therefore, the legal fee paid by a TLO is another input of this stage 

to understand a TLOs’ patenting operations. 

 

Traditionally, there have been two different ways of operating intellectual property in 

TLOs. One is to maintain in-house legal staff, the other is to contract the service to 

outside vendors [91]. As the transactions and complexity of university technology 

commercialization increase, universities institute three types of TLO structures: 

traditional university structure, non-profit research foundation, and for-profit venture 

extension [77]. Baldini, et al. [11] found that the patenting activities of the Italian 

universities with internal IPR regulations have increased almost three times during the 

1990s. They also found that larger universities and universities close to industry-intense 

locations are involved in more patenting activities. Therefore, different resources, 

legitimacy, and mission of the universities influence patent activity. 

 

D. License & option executed and start-up 

TLOs look for a licensee opportunity inside or outside of their organizations where the 

technologies are transferred, and negotiate the contract details. Disclosure as well as the 

patent application are input resources at this stage and are issued because some 

inventions are licensed before the patent is filed [47, 123].  
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TLO managers must have excellent business skills to obtain a good position in the 

contract. Also, the goal and mission of the university influence the licensing strategy of 

TLOs at this stage. The license strategies for university IP include an exclusive or non-

exclusive license for the sponsored research, cash, and equity. These are defined as 

outputs at this stage.  

 

Most disclosures (88%) were too embryonic to use commercially at the time of licensing. 

Therefore, they needed further development before they could be used commercially. For 

this purpose, cooperation between licensees and inventors was suggested as a very 

important characteristic for successful commercialization [59, 105]. Therefore, 

interaction between faculty and industry will influence the TLO’s operation at this stage. 

 

Universities employ different policies and effort toward licensing, depending on their 

goals toward public contribution, by distributing the knowledge, securing IP, and 

obtaining research funds from it [45, 46, 56, 61]. These different perceptions of 

technology commercialization and IP policy affect TLO organizational culture and 

structure that universities institute [77]. Therefore, TLO structure influences the licensing 

strategy.  
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E. Licensing Income 

TLOs monitor and manage licensing income from various licensing contracts. They 

optimize the licensing portfolio to both maximize the profits and correspond to the 

organizational policy. 

 

Considering the scale of licensing income, which is only 2.3% of research expenditure, 

the licensing income can be neither a major source of research funding nor by itself 

contribute to the institution. However, it could be an important source of funding for the 

technology commercialization transaction costs of licensing, patenting, and maintaining 

the TLO [24]. Additionally, some universities consider it as an important financial source 

in addition to other non-monetary benefits [96, 107]. Universities receive royalty on sales 

and equity in start-up companies which receive equity of a start-up, royalty, or one time 

cash from the licensing in compensation for transferring their intellectual property. 

Depending on the licensing types, the profit occurs for the different range of years.  

 

Intellectual properties of universities are licensed in several different ways: licensing in 

exchange for sponsored research, licensing for equity, up-front license fees, and royalties 

on sales [23, 77]. Bray and Lee [23] found that license fees range from $10,000 to 

$50,000, and $250,000 for a matured technology in a market. Royalties range from 2% to 

5% on sales. They suggested that equity can provide the TLO flexibility to make more 

deals and higher returns than royalty. While cash is still the most preferred strategy, the 

use of equity has increased significantly. 
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Finally, TLO structures (traditional university structure, non-profit research foundation, 

and for-profit venture extension) will influence licensing income by building up different 

licensing portfolios and management. 

  

 Characteristics influencing the Commercialization Practice 2.5.3.

Powers [96] suggested that ARITC is a process involving  various resources such as 

quality of faculties, the presence of particular programs and infrastructure, the amount of 

R&D support, and other characteristics.  

 

The process of the ARIC includes non-serial activities, time-lag, resources and 

influencing characteristics. The technology commercialization process yields disclosures, 

patents, license agreements, startups, and licensing income by transferring university 

knowledge or technology to industry throughout each transferring stage. The TLO is the 

agency operating and managing this process given the university’s resources. The 

outcomes of each stage will vary according to the quantity and quality of resources and 

influencing characteristics. In order to understand and evaluate the performance of a TLO 

through the ARIC process, the related characteristics are identified for further analysis 

through the literature review. 
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A. TLO skills 

Current studies of TLO skills showed inconsistencies in their impact on outcomes. While 

most researchers expect better business skills to enhance ARITC activity, some studies 

[28, 76] resulted in negative relationships with outcomes. TLO skills are essential and 

could improve the ARITC activity, but a TLO by itself cannot overcome the limitations 

which universities may have such as low market attractiveness, low interest of university 

researchers in commercialization, organizational culture, and policy. It would be difficult 

to find conclusive relationships between TLO skills and final results such as license and 

licensing income. Therefore, TLO skills should be understood for how they facilitate the 

commercialization process and how they influence the result along with other 

characteristics. 

 

B. TLO size 

TLO size was negatively related only to the licensing income but was not statistically 

significant in the Siegel, et al. [111] study. Except for that study, TLO size is the only 

characteristic that almost all surveyed studies concluded had a positive relationship to 

patent, license agreement, and licensing income. It could be understood in two ways. 

First, universities need more TLO expertise to deal with increasing numbers of ARITC 

transactions. Second, universities have invested in the TLO to enhance the ARITC 

process and, therefore, as a result more outcomes could be acquired. Whichever is correct, 

it is clear that TLO size is positively related to more outcomes. However, our interest 

here is to understand how efficiently and effectively universities operate their ARITC 
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processes. One interesting finding by Siegel, et al. [111] was that TLO size had constant 

returns-to-scale to the licensing agreements. They used SFE and F-test to check returns-

to-scale, but their result was not statistically significant. However, it would be worth 

investigating further if TLO size has a certain optimal point for effective ARITC by 

examining scale efficiency of DEA. 

 

C. Presence of a medical school 

Presence of a medical school is also another characteristic for which relationships with 

outcomes such as patent, license agreements, and licensing income varied in several 

studies [11, 28, 96, 111]. There have been conclusive views of the impact of the medical 

school on the ARITC outcomes. Thursby and Kemp [122] explained that the negative 

relationship between presence of a medical school and efficiency was due to the heavy 

service commitments of medical schools. This reduced technology commercialization 

efficiency even though the university produced significant amounts of licensing for 

biomedical inventions. Another explanation could be found in the study by Bekkers and 

Freitas [14] exploring technology transfer channels from university to industry. The study 

found that technologies in the areas of biomedical and computer sciences were 

transferred by more collaborative and contract research, while inventions in material 

sciences and chemical engineering had more licenses and patents. The firms preferred 

these different channels based on their strategies of innovator or early adopter. Therefore, 

the existence of a medical school is expected to be related to other characteristics which 

indirectly influence the technology commercialization performance. 
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D. University’s public or private status  

Private universities were found to be efficient in ARITC and produce relatively more 

license agreements and income than public universities [6, 76, 96, 111, 122]. Lach and 

Schankerman [64] provided better insight regarding the impact of the university status by 

examining it along with other characteristics. They found that TLO size and age was 

more positively related to licensing income for private schools than public. However, in 

order to understand why private schools are more effective in technology 

commercialization, their influence should be investigated. 

 

E. Institutional prestige 

Academic prestige is related to the university ARITC. An academic institution of high 

prestige could have an advantage in licensing because a potential buyer easily recognizes 

its technologies [116]. Academic prestige and quality of faculty influence licensing 

income. Thursby and Thursby [123] found that the top five inventions yield about 76% of 

the total licensing revenue. This implies that only a few valuable inventions by 

outstanding faculties in high prestigious universities could obtain remarkable success in 

markets  [96] [123]. Sine, et al. [116] provided a comprehensive study of the influence of 

institutional prestige on the ARITC. Their exploratory study indicated that institutional 

prestige increases licensing activities, and this positively influences a university’s 

research and disclosures. 
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 Summary 2.5.4.

In this section, the licensing process and characteristics influencing characteristics which 

will be used in the analysis are defined based on literature review. 

 

The licensing process includes: 

 Research expenditure, 

 Disclosure, 

 US patent filed, 

 US patent issued, 

 License & option executed, 

 Start-up, and 

 Licensing income. 

 

The characteristics include: 

 TLO skills, 

 TLO size, 

 Presence of a medical school, and 

 Institutional prestige. 
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 UTCE Pattern Diagram 2.6.

There have been very active and significant studies done in the area of ARITC. One 

interesting topic among them was to measure the performance of the ARITC. Data 

envelopment analysis (DEA) had been regarded as an appropriate approach to measure 

university technology commercialization efficiency (UTCE). However, current studies 

only identify efficient and inefficient universities and related output or input variables. 

On the other hand, Kim, et al. [62] provided an interesting approach to further 

understanding how the efficient universities are categorized according to their 

efficiencies and how the efficiencies of the universities change over time. The study [62] 

suggested the efficiency pattern diagram to identify changing patterns of the technology 

transfer of 17 efficient universities out of 51 U.S. universities from 2001 to 2004. Five 

efficiency patterns were identified by this study:  “newly emerging,” “strengthening,” 

“strong,” “weakening,” and “declining.”  

 

 Pattern Diagram 2.6.1.

In order to get a comprehensive view of efficiency and reference patterns using three 

measures-change in efficiency, reference frequency, and reference change-a two- 

dimensional diagram was developed. The horizontal axis represents change of efficiency, 

while the vertical axis explains change in reference. For example, the northeast of the 

diagram indicates improved efficiency and an increased number of references. On the 

other hand, a university plotted on the southwest area means declining efficiency and 

decreased references. A university near the origin was stable in both efficiency and 
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reference count. Three sizes of circles were adopted to indicate the degree of frequency 

of reference. The efficiency diagram was applied to 17 efficient universities as shown in 

Figure 9. 

 

Figure 9: The efficiency pattern diagram of 17 efficient universities from 2001 to 2004 
 

Five groups of the 17 efficient universities were identified based on their locations on the 

efficiency pattern diagram. Group one and five consist of low reference frequency 

universities. Universities in the second and fourth group were medium frequency 

universities. The third group included high frequency universities. There were six 

universities which don’t belong to these groups. They were expected to have different 

circumstances compared with the universities in the five groups. For example, the 

University of California System was a strong and stable efficient university. However, its 
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incomparably large scales of input and output of technology commercialization prevented 

inefficient universities from referring to it as a target. The other five universities, 

including Johns Hopkins University and Washington University, had been efficient just 

for one or two times during the period. Because of their short history of efficiency, they 

could not show enough trends to characterize themselves. Therefore, these six 

universities were regarded as outliers of patterns in the efficiency pattern diagram.  

 

 The Five U.S. UTCE Patterns from 2001 to 2004 2.6.2.

Using the pattern diagram of the 17 efficient universities, five patterns were identified. 

 

A. Pattern 1: Newly Emerging University 

University of Georgia (UG), Georgia Institute of Technology (Georgia Tech), and North 

Carolina State University (NCSU) were on the northeast of the efficiency diagram. They 

emerged into the frontier line of the efficiency in 2004. The group was characterized as 

having a low frequency of references, which is less than 10 times, and increasing 

reference. 

 

B. Pattern 2: Strengthening University (two universities) 

New York University (NYU) and University of Wisconsin at Madison (UWM) were 

located in the northeast. They also belonged to the medium frequencies of reference 

group. Their efficiencies and reference frequencies were increasing. 
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C. Pattern 3: Strong University (two universities) 

Two universities belong to this category: California Institute of Technology (Caltech) and 

Brigham Young University (BYU). These universities had strong and stable efficiencies 

during the period. Caltech and BYU were referred to 34 and 31 times during the period, 

which was the greatest amount. Almost all inefficient universities referenced the two 

universities as targets. 

 

D. Pattern 4: Weakening University (two universities) 

MIT and Stanford University (SU) were in the medium size of reference groups as were 

NYU and UWM, but MIT and Stanford University were located in the middle-south area 

on the efficiency diagram. This indicates that their reference frequencies were decreasing. 

Even though they had been efficient for three and four years respectively, they might not 

remain efficient in the near future according to the efficiency diagram. 

 

E. Pattern 5: Declining University (two universities) 

Florida State University and University of North Carolina at Chapel Hill were on the 

southwest corner of the diagram. Their efficiency and number of references decreased 

during the period. The result showed that most of the outputs of the two universities had 

decreased. Therefore, the result indicated that their performances were declining and the 

trend was expected to continue over the next year. 
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 Summary 2.6.3.

This study [62] has limitations and therefore indicates important issues which will be 

studied further in the dissertation. 

 

First, the study used changes in efficiency, reference frequency, and reference change to 

categorize efficiency changes on the pattern diagram. However, the number of references 

does not necessarily present a robust trend of efficiency change. Many other 

characteristics can result in changes in the number of references. Therefore, more reliable 

measures which could explain efficiency changes should be used. 

 

Second, the model assumes that the potential time-lag from 2001 to 2004 didn’t affect the 

result, so the data of the same year was used. However, more investigation about time-

lags is required by examining a wider time frame to build a more robust model.  

 

Third, the study suggested a new approach, the pattern diagram, to identify and 

understand possible patterns of efficiency changes. However, it excluded other inefficient 

universities. The diagram should include all universities, including inefficient universities, 

to examine comprehensive patterns of both efficient and inefficient universities.  
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Fourth, the study observed data from 2001 to 2004. In order to generalize the patterns, a 

further study should investigate a wider time frame. This dissertation will investigate 

about 100 universities from 1996 to 2006. 

 

Finally, the patterns showed how efficiency had changed during the period and which 

variables drove those changes. However, they didn’t explain what organizational 

characteristics were related to the changes. Therefore, organizational characteristics 

which were identified by the literature review will be linked to the patterns.  

 

 Literature Gaps 2.7.

The literature was reviewed in the areas of 1) the nature and process of teaching, research, 

and technology commercialization in higher education, 2) the organizational perspective 

of licensing of academic research institutions, 3) current approaches to assess the 

licensing efficiency, 4) characteristics influencing licensing performance, and 5) a new 

approach, the efficiency pattern diagram. 

 

There are a number of studies evaluating the performance of technology 

commercialization of academic research institutions. They measured efficiencies of the 

technology commercialization or the performance of the TLO. However, some 

limitations of the current studies have been identified. The four major gaps are identified 

through the literature review as summarized in Table 18.   

  



www.manaraa.com

 

91 
 

Table 18: Linking the identified gaps to the research goals. 

Topics Gaps Research Goals 
Time-lag  GAP 1: Time-lag effect 

• Current studies do not properly 
incorporate the time-lag effect of 
variables on the efficiency model. 

• No exploratory studies on identifying 
time-lag in licensing exist. 

G1: Identify the 
ARITC process 
incorporating the 
time-lag effect  

Measuring 
performance of 
academic research 
institution 
commercialization 
(ARITC) 

GAP 2: Measurement of ARITC. 
• Current study doesn’t explain managerial 

issue regarding changes of the licensing 
performance over time.  

• There is not a study providing changing 
pattern of the licensing performance.  

• Some outcomes of ARITC are excluded 
in the efficiency models. 

GAP 3: ARITC change pattern 
• Unreliable measures were used for the 

efficiency changes. 
• Organizational characteristics of the 

patterns were identified. 

G2: Assess the ARITC 
from 1991 to 
2007. 

 
G3: Identify the 

efficiency and 
change patterns 
during the period. 

ARITC and their 
Characteristics 

GAP 4: Identification of the characteristics 
influencing to the performance and efficiency 
change of ARITC 

• Inconsistencies exist in the effect of the 
characteristics throughout the current 
studies. 

• Lack of comprehensive and systematic 
view of the characteristics. 

G4: Identify the 
relationships 
between 
characteristics and 
the licensing 
performances.  

 

 

A. Gap 1: Time-lag effect 

Current studies on the performance of university technology commercialization do not 

appropriately incorporate time-lag among output variables in their models. At best, they 

used averaged value of variables for the purpose. This is due to the lack of an exploratory 

study to identify the time-lags. Without considering time-lag in the model, the evaluation 

result could cause misunderstanding of the practices and performance of the ARITC [55]. 
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The current method from econometrics doesn’t fit to the licensing data and lag behavior 

(see 3 for detail discussion) 

 

B. GAP 2: Measurement of the technology commercialization efficiency  

A performance index of the ARITC can provide a yardstick which a commercialization 

office at an individual institution or policy maker at the national level could use for 

assessing the status and impact of the ARITC. Therefore, an approach for measuring the 

performance index will be provided in this study. 

 

There are, however, a few benchmarking studies of the ARITC. They measure the 

efficiency of the commercialization office or technology commercialization itself. 

However, most studies, except Anderson, et al. [6], used the characteristics as input or 

output variables. Therefore, the input and output structure should be built based on the 

clear and robust process definition of the ARITC. 

 

There are computation limitations, infeasibility and zero data, in super-efficiency VRS 

DEA model. The current solutions to the infeasibility don’t consider the problem in zero 

data (see 3 for detail discussion).  
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C. GAP 3: Efficiency and efficiency change of ARITC 

The preliminary study [62] suggesting a pattern diagram used unreliable measures for the 

efficiency changes. The number of references and their changes which were used as the 

Y-axis and Z-axis don’t necessary represent a certain direction or reasonable reasons for 

efficiency changes. Therefore, more robust measures should be used to measure the 

changes of ARITC performance. Second, the study didn’t identify meaningful 

organizational characteristics of the patterns. In order to provide manageable implications 

to an institution by the patterns, related characteristics and relations to their practices 

should be provided. 

 

D. GAP 4: Identification of the characteristics influencing the performance and 
efficiency of ARITC  

There are a handful of studies on characteristics influencing the practice of ARITC. Some 

of them examine relationships between characteristics and efficiency scores of ARITC 

and others between characteristics and a single output such as patents and licensing 

income by regression analysis. They find some influencing characteristics, but most of 

them are statistically insignificant. Indeed, some of their results are inconsistent with 

others. ARITC involves complex and diverse interests among university administrators, 

faculties, and relationships with industry. However, current studies focus on only the 

direct impact of characteristics on a certain output of ARITC. Therefore, a more 

comprehensive and systematic approach to identifying those direct and indirect impacts 

of the ARITC performance characteristics is required. 
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3 Chapter 3. Research Methodology and Model Development 

 

 Research Objective, Goals, and Questions 3.1.

The objective of this study is to provide a better understanding of academic research 

institution technology licensing activity by evaluating both efficiencies and efficiency 

changes. Seven research questions and corresponding sub-questions designed to achieve 

the research objective are outlined in Table 19. 

 

Table 19: Research goals and corresponding research questions 

Research Goals Research Questions 

 Goal 1:  
Identify the academic 
research institution 
technology 
commercialization (ARITC) 
process, incorporating the 
time-lag effect.  

Research Question 1: What is the process of ARITC? 
Research Question 2: What is the input and output structure 

of ARITC? 
Research Question 3: What time lags exist among ARITC 

inputs and outputs? 
Research Question 4: What is the appropriate model to 

incorporate time-lag effects into the technology 
commercialization process? 

Goal 2:  
Assess U.S. ARITC from 
1991 to 2007. 

Research Question 5: What are the efficiencies of U.S. 
ARITC from 1991 to 2007? 

Goal 3:  
Identify the change of ARITC 
efficiency during the period 
1991 to 2007. 

Research Question 6: What patterns of change are found in 
U.S. ARITC efficiencies from 1991 to 2007? 
• Research Question 6-1: What trends exist in technology 

commercialization process inputs and outputs over time? 
• Research Question 6-2: What trends exist in the 

technology commercialization efficiencies of U.S. 
academic research institutions from 1991 to 2007? 

Goal 4:  
Identify the characteristics of 
ARITC performance. 

Research Question 7: What relationships exist among ARITC 
characteristics and efficiency changes? 
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 Research Approach 3.2.

The research steps and methods are outlined in Figure 10. 

 

 

Figure 10: Research steps and methods 
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A. Goal 1: To identify the ARITC process and incorporate the time-lag effect 

 Step 1: A model of the ARITC process and its input and output structure are 

defined based on the literature review. 

 Step 2: Time lags among input and output variables are identified by time-series 

analysis. A process identifying time lags among variables is developed and then 

validated by using simulated ARITC data. 

 

B. Goal 2: To assess U.S. ARITC performance from 1991 to 2007 

 Step 3: Aggregated time-lag effects of the ARITC are defined by time-lag 

functions and coefficients. 

 Step 4: Efficiencies of U.S. ARITC from 1991 to 2007 are evaluated using a 

modified super-efficiency DEA model and the Malmquist Index. A modified 

output-oriented super-efficiency VRS model is developed to resolve infeasibility 

and zero-data issues in the VRS DEA model. 

 

C. Goal 3: To identify changes in ARITC efficiency during the period 1991 to 2007 

 STEP 5: Performance (efficiency) changes are measured by average efficiency, 

efficiency change, and the Malmquist Index. 
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D. Goal 4: To identify the characteristics of ARITC performance 

Step 6: Explore the relationships between performance and characteristics through 

statistical analysis. 

 

 Developing a Time-Lag Distribution Model (Goal 1) 3.3.

An exploratory study was performed to identify the time lag between the ARITC input 

and output variables. For this purpose, hypothetical time-lag models of expenditure, 

disclosure, patent receipt, license agreements, start-up, and license income were built, 

based on the findings from the literature review. The suggested time-lag regression 

models were then tested. Finally, a time-lag distribution function for each variable is 

suggested to incorporate the time lags into the DEA model of ARITC. 

 

The time lag between academic research and disclosure of the invention is difficult to 

infer because the wide range of academic fields and technical maturity of research 

complicates the duration variances. Given a government-sponsored research period of 2 

to 5 years, the average time lag from research expenditure to disclosure could be 3 years. 

Payne and Aloysius [93], in their study of the effect of public funding on university 

research, insisted that there was a gradual effect of research funding on research outputs. 

They took the average over 3 years to incorporate a 3-year lag from funding to published 

articles. 
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Heher [55] suggested a typical delay in the technology commercialization process. 

According to his model, patents generally are filed within 1 year of disclosure and are 

approved within 4 years. When the TLO appreciates enough commercial value of the 

invention, they file a patent without delay to protect the invention. Therefore, most 

disclosed technologies will be filed for patents within 1 year of disclosure. Thereafter, it 

takes an average of 1.5 to 3 years until the patent is approved and issued [127]. 

 

Disclosures are expected to be licensed during the patenting process. Licensing income 

begins to be collected after about 2 years. A start-up company can be formed after the 

second year, but this usually happens between 4 and 7 years after disclosure. Markman, 

et al. [76], in their study of the effect of innovation speed on the outcomes of university 

technology commercialization, found that the average lag between disclosure and start-up 

was 4.27 years. Mansfield [74] found that the time lag between academic research 

findings and the first commercialization based on the research is about 7 years. 

 

Time series analysis in econometrics provides an advanced method of identifying 

relationships among time series subjects that rarely has been applied to the engineering 

management field. Sophisticated econometrics methods—such as a distributed lag model 

with unrestricted lag, arithmetic lag, polynomial lag, or geometric lag structures—and 

dynamics model theories enrich the analysis of long-term economic data and their lasting 

effects. However, observations in the engineering management field, which tends to have 

highly uncertain time effects and relatively insufficient time series, hinder the application 
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and benefits of time-lag analysis, which is very important to understanding the dynamic 

behavior of subjects in this field. Therefore, this section revisits and compares selected 

time series approaches and suggests a process for identifying the time-lag coefficients of 

licensing input and output variables. The verification of this process is performed in 

Chapter 4, using a simulated data set to represent university technology licensing 

activities. 

 

In addition to the process used to identify time-lag coefficients, an approach of 

combining each pair of lag coefficients with the complicated multiple paths from 

licensing to licensing income is provided. 

 

 Time Series Models and Their Limitations 3.3.1.

The current time-lag identification process in econometrics has several limitations when 

applied to licensing data. First, the models assume continuous lags over time. Second, 

their effects are prolonged for a long period and diminish over time. Finally, the lags are 

assumed to be effective at the beginning of the occurrence of the investigated subject. 

The models select length of time lags in such a way as to minimize Akaike’s information 

criterion (AIC) or Bayesian information criterion (BIC) statistics. Although the models 

can measure time-lag effects of subjects in which the coefficients follow a certain pattern, 

such as linear, polynomial, or geometric change over a long period, these assumptions are 

not appropriate for licensing data for which discontinuous and short-term time-lag effects 

exist. 
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The current time series models are summarized in Table 20. 

 
Table 20: General time series models and their limitations 

Time Series Model Model Specification Limitation 

Autoregressive (AR) 
model 

AR (p) 
�� = � + ������ + ������ +
⋯ + ���� + ��  

The concept of self-
growing is not applicable 
to licensing theory 

Autoregressive moving 
average (ARMA) 
model 

ARMA (p, q) 
�� = � + ������ + ������ +
⋯+ � ��� + ∑ ������

�
���   

Where ��	 is defined by 
�� = � + ������ + ������ +
⋯ + ���� + ��  

Autoregressive 
integrated moving 
average (ARIMA) 
model 

ARIMA (p, d, q) 

Distributed lag model �� = � + ���� + ������ +
⋯ + ���� + ��  

Explains the licensing 
theory 
Selected as licensing lag 
model 

 

 

 A Process for Identifying Time-Lag Coefficients 3.3.2.

Time lags among the licensing data are examined by using a distributed lag regression 

model. The distributed regression model, a well-known and widely used time series 

analysis in economics, estimates causal effects on two subjects. For this purpose, a series 

of statistical processes has been developed. The five steps for identifying time-lag 

coefficients are presented in Figure 11. 
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Figure 11: Process to identify time-lag distribution coefficients 

 

A. Step 2-1: Stabilize the Data 

In time series analysis, the data should be stationary in order to create a model that will 

correctly predict future behavior, means, variances, and correlation with other variables 

based on the past data [40, 119, 131]. To say that data is stationary means that statistical 

STEP 2-1 Stabilize the Data 
Evaluate panel data if they are stationary. 

STEP 2-2 Construct Model 
Define the structure of the relationship 

between input and output of regression 

model 

STEP 2-3 Identify Potential Lag Period 
Identify potential lag periods of each 

regression model 

STEP 2-4 Determine Lag Period 

Identify significant lag periods 

STEP 2-5 Estimate Coefficients 

Estimates lag coefficients with the 

identified significant lag periods 

Augmented Dickey 
Fuller (ADF) Test 
LLC Test 

Conceptual Model 
Time-Series Model 
Selection 

Correlation 

OLS Model 

OLS Regression Analysis 
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properties such as means and variances are all constant over time. If there is a systematic 

change, such as a trend, the data should be transformed to eliminate the trend. 

 

For example, consider the first-order autoregressive model �� = ����� + ��, where t = 

1…∞  and error term �� = �(0,��). If �  = 1 and �� = 0 are assumed, ��  is equal to 

�� + ∑ ��
�
���  by repeated substitution. Then, the variance of �� , ���(��), becomes 

����∑ ��
�
��� �= ��� . As a result, the variance is time dependent and the regression 

model causes problems in predicting the future. To avoid this problem in this example, 

therefore, � should not be 1. 

 

The augmented Dickey-Fuller (ADF) test is the most common method to test whether a 

time series data is stationary. Continuing with the previous example, the ADF tests 

whether parameter � is 1 by testing ∇�� = (� − 1)���� + �� , using the Dickey-Fuller 

table [119]. The Levin-Lin-Chu (LLC) test determines whether cross-sectional panel data 

is stationary [68, 131]. The present study used the Stata package to conduct ADF and 

LLC tests. 

 

If the data is not stationary, the first order difference, diff(1) = �� − � ���, is applied to 

the data and then the test is repeated. 
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B. Step 2-2: Construct Model 

The time lags are defined by the significant relationship between an output variable at a 

certain year and corresponding input with intervals of time. The 21 regression models 

representing the potential relationships among time-lagged input and output licensing 

variables are tested to find significant relationships. 

 

For this purpose, the distributed lag model is suggested as an appropriate regression 

model to detect time lags in licensing data. The distributed lag equations present the 

dependent variable �� at time t and is the result of a weighted sum of the past value of 

independent variable X from time t to � − � [5, 13, 92], as follows: 

 

��,�= ����,�+ 	����,���+ ����,���+ ⋯+ � ���,���+ ��,�,      .....................................  (1) 

where 

� = output technology licensing variable (disclosure, patent application, patent issued, 

licenses and options executed, start-up, and licensing income); 

�  = input technology licensing variable (expenditure, disclosure, patent application, 

patent issued, licenses and options executed, and start-up); 

� = �th institution (� = 1, 2,… 46); 

� = year; 

� = �th year before �; 

��,��,…,��  = coefficients corresponding to input variable � in the current year (��,�), 

the previous year (��,���), and the �th year earlier (��,���); and 
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��,� = residual (error term). 

 

There are four ways to estimate the coefficients of the distributed lag model: through 

unrestricted lags, through linearly declining lags, through polynomial lags, and through 

geometrically declining lags. Each method assumes a unique coefficient structure of the 

lags over time (Figure 12). 

 

 
Figure 12: Coefficient structures of time series models 

 

Unrestricted time-lag coefficients are estimated using ordinary least squares (OLS). The 

OLS estimation suffers from limitations such as imprecise, large standard errors, but the 

approach helps when no structure is assumed with finite lags. Arithmetic or linearly 

declining lags assume that the effect of the independent variable eventually reaches zero 

and that the effect of each lag is less than the effect of the previous one. The coefficient 
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structure follows an arithmetic series, �� = �� + �(� − 1). It benefits from simple 

estimation of only one parameter and presents a more reliable result than unstructured lag, 

with straightforward interpretation. However, if the restriction of the lag structure is not 

true, the estimators will be biased and inconsistent. 

 

Polynomial lag, or Almon lag, requires the assumption of finite effect and zero at the end 

of the period. The coefficients are dependent on each other, as arithmetic lag, but they 

don’t have a uniform pattern. The coefficient structure is �� = �� + ��� + ���
� … ���

�. 

This model has fewer parameters to estimate but is more precise than the unrestricted lag 

structure.  

 

Geometric lag, or Koyck lag, is used when the lag length is infinite and the lag 

coefficients follow a geometric pattern. The equation of the coefficient structure is 

�� = ��� , where |�|< 1  and ��� > 0 . It requires an estimate of only �  and � , but 

geometric lag transformation is required for the estimation. It doesn’t allow a 

heterogeneous or unsmooth declining lag structure. 

 

Linearly and geometrically declining lag structures are not considered. The models 

assume that the effect of an independent variable is high at year zero and diminishes as 

time goes on, but this doesn’t represent the nature of licensing variables. Some licensing 

variables are expected to result from other, independent licensing variables after a certain 

number of years have passed, and the overall distribution of the lag effects will have a 
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convex curve shape. Therefore, unrestricted and polynomial lag structures are considered 

for the lag structure of the licensing. 

 

The following section describes a test to identify which structure fits better with the 

licensing data and lag behavior, using a simulated data set. The result shows that the 

unrestricted lag structure fits the data better than a polynomial structure. Therefore, the 

unrestricted lag model with OLS estimation is applied in this study.  

 

C. Step 2-3: Identify Potential Lag Period 

The maximum lag period in the distributed lag regression models is determined by 

goodness-of-fit statistics. The statistics used for this purpose are mean square error, 

Akaike’s information criterion, and Bayesian information criterion [13, 92, 119]. Both 

AIC and BIC measure the trade-off between accuracy and complexity of information in 

the model by adding more lag periods. If more lag periods or parameters are included in 

the models, the model’s goodness of fit is increased, but it also results in overfitting. The 

lower value of the two criteria implies fewer independent variables (lag periods) and a 

better fit. These methods identify the maximum lag period when the independent 

variables effect continuously over a time period.  

 

In this paper, an exploratory approach is utilized to identify significant lag periods. Based 

on the findings of the study, the time-lag periods are defined in two steps; identifying 

potential lag period and define significant lag period. First, the correlations among the 
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independent variables (lag periods) and the dependent variables are examined. The lags 

that have positive correlation with the dependent variable are selected as potential lags. 

The lags showing negative correlations are excluded because it is assumed that, in 

licensing, an increase (or decrease) of an independent variable results in an increase (or 

decrease) of a dependent variable. Therefore, the negative correlation of a lag with a 

dependent variable indicates that it is not associated with change in the dependent 

variable, as demonstrated in the test with simulated data. The following describes the 

second step of defining significant lag period. 

 

D. Step 2-4: Determine Lag Period 

Second, the lags with positive correlation with the dependent variables could be either 

true lags, representing actual lags in licensing, or coincident events. Therefore, the 

distributed time-lag models with the identified potential lags are tested to define which 

lags are significant. The lags with a statistically significant level of 1% from the 

regression analysis are selected as final lag periods for each pair of independent lag 

variables and the dependent variable of licensing. 

 

E. Step 2-5: Estimate Coefficients 

The final distributed lag models with the lag periods identified in the previous step are 

tested to observe actual lag effects on a dependent variable. 
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 Process for Calculating the Aggregate Total Time Lag 3.3.3.

Performance evolution of universities’ licensing practices has received favorable interest 

in the literature. However, the existing studies implicitly or explicitly state their limitation 

of ignoring time-lag effects of the licensing variables, such as expenditure, patents, and 

start-up licensing income. A statistical process to identify the time-lag coefficients of 

licensing variables with regard to U.S. research institutions provided insight into the time 

lags of each pair of licensing variables. 

 

The present section employs an approach that incorporates multiple paths in the licensing 

process, with the time-lag coefficients. The identified time lags include both direct and 

indirect relationships presenting time duration among licensing activities. As a result, 

multiple time-lag relations are involved in multiple paths from a licensing activity to 

another activity. Using the identified time-lag effects for the evaluation of the entire 

licensing process requires an approach that will connect the lag effects of all other 

licensing variables to the output variable in the final licensing process. For this purpose, a 

time-lag transform function is defined and applied to all possible licensing paths, 

generating total time-lag effect neutralized licensing data. The overall process is 

presented in Figure 13. 
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Figure 13: Time-lag aggregation process using time-lag coefficients 

 

A. Step 3-1: Define Time-Lag Function and Transform Function 

A transform function combines two paths in order to extract an intermediating variable. 

 

1) Definition of the time-lag function 

Let �� and ��denote values of technology commercialization input � and output � at year 

�, and ����  denote the value of input � prior to � years; time lag �. The output �� at year 

t is defined as a result of the prior inputs of ����, ����, ����, …, ����, if there are time 

lags of 0,1, …,� years from input � to output �. Assuming no other intervening input 

between � and � , the input, ��∗ , represents the time lag aggregated input value of �, 

STEP 3-2 
Identify All Paths from Inputs to Outputs 

STEP 3-4 
Define Direct Lag Functions of Each Path 

Transform of the lag 
functions 

STEP 3-5 
Define an Aggregated Total Time-Lag 

Sum up and standardize 
the transformed time-lag 
functions 

STEP 3-3 
Define Time-Lag Functions in the Paths 

Time-lag 
coefficients 

STEP 3-1 
Define Time-Lag Function and  

Transform Function  
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incorporating all the time lags into a single year �. The time aggregated input ��∗  is 

calculated by time-lag function ��� , which is defined as 

��∗ = ���(����, ����, ����,…, ����)      ........................................................................  (2) 

= ������ +	������ +	������ +	…+	������	   

= ∑ ������
�
��� ,   

where 

���  = time lag function presenting the relationship between output variable � at year � 

and input variable � at ���  lag, and 

�� = standardized time lag coefficients at ���  lag, �� + 	�� + 	��+,…, 	 + 	�� = 1. 

 

The time-lag coefficients ��, ��, ��,…, ��  are equivalent to the normalized standard 

coefficients of the multi-regression model by dependent variable ∆��  and independent 

variables ∆����	,	∆����	,	∆����	, …, ∆����	, where N is the time range considered in the 

time-lag analysis.  

 

2) Time-lag transform function with a intervening variable 

Let � be an intervening variable that is an output from input � and then an input for the 

next result, �. When the prior time lags of ��� between � and �, and posterior time lags of 

���  between �  and �  are observed, the time lags from �  to � , ��� , are defined by 

transforming time-lag function ���⨂��� , as shown in Figure 14. 
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Figure 14: Time-lag transposing function at PATH i 

 

The transform function ���⨂���  is defined as follows: 

���
����	� = �����	���	��������⨂���������	���	�������� =      ..............................  (3) 

���⨂f�� = ��∗ = ���� = ���(�∗) = ���(�)����	�, 

where 

�������(�), 	���(���), 	���(���), … , 	���(���)� = prior time-lag function from � to � with lag 

�, � + 1,…, � + �, 

�������(�), 	���(���), 	���(���), … , 	���(���)�  = posterior time-lag function from �  to � 

with lag �, � + 1,…, � + �, 

���
����	� = transform function from � to � through PATH �, 

PATH	� =	 ith path from � to � via �, 

� = an intervening variable between � and �, and 

�∗ =  

⎩
⎪
⎨

⎪
⎧ �∗

��(�) = ��� ����(���), 	���(�����), 	���(�����), … , 	���(�����)�, 	

�∗
��(���) = �������(�����), 	���(�������), 	���(�������), … , 	���(�������)�, 	

⋮

�∗
��(���) = �������(�����), 	���(�������), 	���(�������), … , 	���(�������)�⎭

⎪
⎬

⎪
⎫
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Because the time-lag coefficients are the normalized standard regression coefficient, the 

time-lag aggregated value ��∗  from ���  is an approximation of the regression model 

�� = ������ + ������. The time-lag aggregated value ��∗ is equal to 
�

�����
(= �)��, and 

� is defined as follows: 

Time lag coefficients �� =
��

�����
 and �� =

��

�����
                                           

��� = ��∗ = ������ + 	������ =
��

�����
���� +

��

�����
����      .......................................  (4) 

= 	
�

�����
(������ + ������) =

�

�����
(��) = 	���~	��  

 

For example, given time-lag function ���(����, ����, ����, … , ����) = 0.2���� + 0.8���� 

and ���(����, ����, ����, … , ����) = 0.3���� + 0.7����, the time lag transform function of 

���  can be defined as 

��� = ���⨂��� = ����(����, ����) = �����∗	�      .........................................................  (5) 

 

The ��∗  can be substituted for �� . Then, ����  is equivalent to �(���)∗ = 0.2���� +

0.8����,  and ����  is equivalent to �(���)∗ = 0.2���� + 0.8���� . This transform is 

summarized as follows: 

�∗ = �
�∗

��� = 0.2���(���) + 0.8���(���)	

�∗
��� = 0.2���(���) + 0.8���(���)	

�  

 

Finally, the transposed time-lag function ����(����, ����, ����, … , ����) is defined as 
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����(����, ����) = �����∗	� = ���(�∗
���, �∗

���)       ..................................................... (6) 

= 0.3�∗
��� + 0.7�∗

���  

= 0.3(0.2���� + 0.8����) + 0.7�	0.2���� + 0.8�����  

= 0.06���� + 0.38���� + 0.56����  

 

The transform function combines the prior and posterior time-lag functions in a way that 

extends the lags to the sum of maximum lag lengths of each lag period and smooths the 

two lag distributions by multiplying them as illustrated in Figure 15.  

 

    
(a) Time lag function: ���                (b) Time lag function: ���  

 
 (b) Transposed time lag function: ���  

Figure 15: Example of transform function of the time lags 
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B. Step 3-2: Identify All Paths from Input to Output 

To identify all paths from each input to licensing income, direct and indirect paths are 

defined as illustrated in Figure 16. The direct path is the first-degree path between two 

licensing variables. The indirect path is associated with an intermediating variable 

between the two variables, with multiple distance degrees of more than two. The 

licensing paths are defined using all possible paths from each variable to the licensing 

income. 

 

 

Figure 16: Definition of paths 

 

C. Step 3-3: Define Time-Lag Functions in the Paths 

Calculate new time-lag functions between the two licensing entities in the paths, using 

time-lag coefficients as demonstrated in Step 3-1. 
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D. Step 3-4: Define Direct Lag Functions of Each Path 

Define the direct lag function from each input to licensing income, using the transform 

function. After transform functions are applied to all paths in the licensing activity, all 

associated intermediating variables are eliminated and only a direct path from variable of 

interest to the licensing variable remains. 

 

Figure 19 presents an example of multiple paths from an input variable, X, to an output 

variable, Y. Two intermediating variables, Z1 and Z2, are associated in the paths. 

Therefore, the indirect Path 1 (��,�
� ) from X to Y requires two transform functions 

(����⨂	f����⨂	f���), and the indirect Path 2 (��,�
�) is defined by one transform function 

(����⨂	f��� ).  

 

 

Figure 17: Example of multiple paths from an input to output variable 

 

The direct path indicates either an actual lag effect from X to Y or a virtual effect, 

presenting overall lag effects of indirect Path 1 and Path 2. For example, patents (X) are 

licensed for cash (Y), or patents (X) are licensed to a start-up (Z1), and then yield 
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licensing income (Y). Lags from expenditure to licensing income could be a virtual effect 

representing all other ways to be licensed. 

 

E. Step 3-5: Define a Total Aggregated Time-Lag Effect 

Sum up and standardize transformed direct lag functions, incorporating all lag effects 

from all the paths. 

 

Lag coefficients (��,�) of the direct path, which are observed in the regression model, 

represent the most significant effect (in case of virtual effect) or the most important effect 

(in case of actual effect) out of time lags in all paths. In both cases, adding up the three 

transformed lag functions (first-degree functions) in the paths, 	��,�
�

 +	��,�
�

+	��,�
�

, 

provides a reasonable way to integrate the paths by giving more weight to these important 

lags. 
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 Measuring the Performance of Academic Research Institution Technology 3.4.

Licensing (Goals 2 and 3) 

The efficiencies of university technology commercialization show certain patterns over 

time [62]. Thus, ARITC practices could be better understood by examining those 

changing patterns and finding characteristics related to the changes. The changes in the 

efficiency scores could result from either the improvement of the institution or changes in 

the efficiency frontier. The Malmquist Index, comprising efficiency change (EC) and 

technical change (TC), provides a way to measure both changes in efficiency and the 

frontier of best practices over time. 

 

In the present study, the output-oriented super-efficiency model is applied to measure the 

efficiencies and the Malmquist Index. However, both super-efficiency and the Malmquist 

Index models have an inherent computational infeasibility when a variable returns to 

scale is applied. Therefore, the computation limitation and related approaches to the issue 

are explored. Finally, a new method of resolving the issue for both super-efficiency and 

the Malmquist Index model is suggested. 

 

 Data Envelopment Analysis 3.4.1.

Data envelopment analysis is a benchmarking technique developed to evaluate the 

performance of organizations in service sectors [108]. DEA is a mathematical 

programming tool and model to evaluate the performance of peer units, using multiple 
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inputs and outputs [34]. Since it was introduced by Charnes, Cooper, and Rhodes (1978) 

[29], more than 2,000 related articles have been published [34]. 

 

A. Basic Mathematical Model  

DEA is used to find the set of coefficients (��,��) that make the highest possible 

efficiency ratio (θ�) of input (���) and outputs (���) for all decision-making units (DMUs) 

(DMUj; j = 1…n) [108]. The basic form of DEA is presented in (7). 

 

Maximize   �� =
������	������⋯�� ����

������	������⋯�� � ���
=

∑ �����
�
���

∑ �����
�
���

      ................................................  (7) 

Subject to   
∑ �����
�
���

∑ �����
�
���

≤ 1																																			� = 1,2,…,� 

��, …,�� > 0  

v�,…, �� ≥ 0  

 

This model calculates the relative efficiency ratio (θ�) of the DMUo. If the value of θ� is 

less than 100%, the DMUo is inefficient. 

 

B. Multiplier Model 

The general model (7) as presented is nonlinear; therefore, it must be changed to a linear 

form, multiplier problem, using the following transformation [34]: 

� = (∑ �����
�
��� )�� = 1,�� = ���      ...........................................................................  (8) 
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The transformed input-oriented model is presented in (9). 

 

Maximize   ∑ �����
�
���       ............................................................................................  (9) 

Subject to   ∑ �����− ∑ �����≤ 0
�
���

�
��� 															i = 1,2,…,� 

∑ �����= 1�
��� 																																						r = 1,2,…, �  

��, ��≥ 0																																																j = 1,2,…, � 

 

The variables ��	and	�� are decision variables and are called output and input multipliers. 

 

C. Input- and Output-Oriented Models 

There are two approaches in DEA to identify the efficiency frontier line. One is to 

minimize input (the input-oriented model) and the other is to maximize output (the 

output-oriented model). The input-oriented multiplier model is presented in (10) by 

applying the dual linear program to the multiplier model (9). 

 

Minimize   �      .........................................................................................................  (10) 

Subject to   ∑ λ�x��	≤ 	θx��																				� = 1,2, …,��
���  

∑ �����≥ ���																								� = 1,2, …,��
���   

��≥ 0																																										� = 1,2, …, �  

 

The relative efficiency of the jth DMU of the input-oriented model is represented by ��. If 

the DMU is efficient, the value of � is 1. Otherwise, the value is less than 1. 
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The output-oriented multiplier model is presented in (11). 

 

Maximize   �       ........................................................................................................  (11) 

Subject to   ∑ �����	≤	���,																						� = 1,2,…, ��
���  

∑ �����≥ �� ��,																				� = 1,2,…, ��
���   

��≥ 0																																										� = 1,2, …, �  

 

The efficiency of the output-oriented model is � . The value of �  of an inefficient DMU 

is greater than 1. 

 

D. Input and Output Data Envelopment Analysis Slack: Two-Stage Model 

DEA slack is defined as the amount of reduction, or the increase of an input or output 

variable, of an efficient DMU, which is on the efficient frontier facet. This DMU is called 

a weakly efficient unit [108]. In order to check the DEA slack, the two-stage model is 

used. In the first stage, efficiency scores are calculated by the input- or output-oriented 

DEA model. At the second stage, the DEA slack model is applied. The input- and output-

oriented second-stage slack models are presented in (12) and (13) holding the efficiency 

score from the first phase constant, respectively. 

 

3) Input-oriented second-stage slack model 

Maximize   ∑ ��
� +	∑ ��

��
���

�
���      .............................................................................. (12) 

Subject to   ∑ �����+	s�
� 	≤	θ∗���													� = 1,2,…,��

���  
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∑ �����−	s�
� ≥ ���																		� = 1,2,…, ��

���   

��, s�
�,s�

� ≥ 0																																		� = 1,2,…, �  

 

4) Output-oriented slack model 

Maximize   ∑ ��
� +	∑ ��

��
���

�
���      .............................................................................. (13) 

Subject to   ∑ �����+	s�
� 	≤	���																� = 1,2,…, ��

���  

∑ �����−	s�
� ≥ � ∗���												� = 1,2,…, ��

���   

��, s�
�,s�

� ≥ 0																																	� = 1,2,…, �,  

where ��
�and ��

� represent input and output slack, respectively. The optimal solution of 

each input- and output-oriented DEA, θ∗ and � ∗, is calculated by the multiplier model (8, 

9) before slack models are applied. 

  

E. Returns to Scale 

The DEA models discussed above assume that the input and output variables have a 

constant returns to scale (CRS) relationship. This means that a change in input results in a 

change in output with a certain linear ratio. For example, if input x increases to α*x, then 

output y also increases β*y, while α = β [34]. On the other hand, if α ≠ β, then it has one 

of two relations: α > β or α < β. Increasing returns to scale is the case of α < β, if both α 

and β represent increase. Decreasing returns to scale is the case of α > β, if both α and β 

decrease. Variable returns to scale represents either increase returns to scale or decrease 
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returns to scale. To incorporate VRS into the DEA model, one more constraint, ∑ ��=
�
���

1, can be added. 

 

F. Super-Efficiency Model and Infeasibility 

The super-efficiency DEA model excludes from the reference set of the DEA model a 

DMU under evaluation. The result is that the (output-oriented) score of an efficient DMU 

is usually greater than 1 [34, 137]. The output-oriented BCC super-efficiency DEA model 

is presented in (14). 

 

Maximize   ������      ................................................................................................  (14) 

Subject to   ∑ �����	≤	���,																												� = 1,2,…,��
���
���

 

∑ �����≥ �
��������

�
���
���

,																� = 1,2,…,�  

∑ ��
�
���
���

= 1, 

��≥ 0																																																� ≠ �  

 

In the model (14), if the output value of an evaluated DMU is smaller than a convex 

combination of the other DMUs, the output constraint cannot be satisfied, therefore 

resulting a computational infeasibility [106] [134] [30] [70] [31] [33, 66]. 
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G. Productivity Change 

The Malmquist productivity index was developed in 1953 by Sten Malmquist [73] and 

has been proven to be a good tool for measuring productivity changes [34]. It measures 

changes in both the frontier and the efficiencies of DMUs. MI requires two single-period 

and two mixed-period measures. The input-oriented CRS DEA models are used, for 

example, in (15-18) [34]. 

 

The first CRS DEA model in time period t = ��
�	(��

�,��
�) 

 

��
�	(��

�,��
�)= ��������	��      ...................................................................................  (15) 

Subject to   ∑ �����
� 	≤	�����

� ,																								� = 1,2,…, ��
���  

∑ �����
� ≥ ���

� ,																														� = 1,2,…,��
���   

��≥ 0																																																	� = 1,2, …,�  

 

The second CRS DEA model in time period t + 1 = ��
���	(��

���,��
���) 

 

��
���	(��

���, ��
���)= ��������	��     .........................................................................  (16) 

Subject to   ∑ �����
���	≤	�����

����
��� ,																	� = 1,2, …,� 

∑ �����
��� ≥ ���

���,																								� = 1,2,…, ��
���   

��≥ 0																																																	� = 1,2, …,�  

 

The first mixed CRS DEA model is ��
�	(��

���,��
���) 
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��
�	(��

���, ��
���)= ��������	��      ............................................................................  (17) 

Subject to   ∑ �����
� 	≤	�����

����
��� ,																					� = 1,2,…,� 

∑ �����
� ≥ ���

���,																											� = 1,2,…,��
���   

��≥ 0																																																� = 1,2, …,�  

 

The second mixed CRS DEA model is ��
���	(��

�,��
�) 

 

��
���	(��

�,��
�)= ��������	��      ...............................................................................  (18) 

Subject to   ∑ �����
���	≤	�����

� ,																				� = 1,2,…,��
���  

∑ �����
��� ≥ ���

� ,																										� = 1,2,…, ��
���   

��≥ 0																																																� = 1,2, …,�  

 

Finally, the input-oriented MI is defined by the following equation: 

M � = �
��
�	���

�,��
��

��
�	���

���,��
����

×
��
���	���

�,��
��

��
���	���

���,��
����

�

�

�
      ...................................................................  (19) 

 

The index, ��, measures productivity change between t and t + 1. If �� > 1 , it means 

productivity declines. When	�� = 1, it remains unchanged. MI is also used to calculate 

the change of efficiency and the movement of the frontier in terms of a specific DMU. 

For this purpose, MI is decomposed to the technical efficiency change and the shift in the 

frontier (technical change) between t and t + 1 [34]. 
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EC� =
��
�	���

�,��
��

��
���	���

���,��
����

      .............................................................................................  (20) 

If EC� is less than 1, it means that efficiency improves; if it is equal to 1, it means 

efficiency is unchanged; if it is greater than 1, it means that efficiency declines. 

TC� = �
	��
������

���,��
����

��
�	���

���,��
����

×
��
���	���

�,��
��

��
�	���

�,��
��
�

�

�
      ....................................................................  (21) 

If TC� is greater than 1, it means regression in the frontier. The frontier progresses if TC� 

is less than 1. 

 

 Infeasibility in the Malmquist Index and the Super-Efficiency Model 3.4.2.

Seiford and Zhu [106] explored the details of the necessary and sufficient condition of 

infeasibility in the super-efficiency model. The issue is applicable only to nonconstant 

returns to scale, such as non-increase, nondecrease, and variable returns to scale. The 

conditions of infeasibility, along with the types of returns to scale, are summarized in 

Table 21. 
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Table 21: Infeasibility of the super-efficiency data envelopment analysis models 

Super-Efficiency DEA 
Models 

Model Specification of the Condition 
Conditions of 
Infeasibility 

Output 
oriented 

VRS 

ℎ∗ = min ℎ 
s.t. ∑ ���� ≤ ℎ�

���
���

�� 

      ∑ ��
�
���
���

= 1, �� ≥ 0, � ≠ �. 

If and only if 
ℎ∗ > 1 

NIRS 
(DRS or 

CRS) 
Always feasible 

NDRS 

ℎ∗ = min ℎ 
s.t. ∑ ���� ≤ ℎ�

���
���

�� 

      ∑ ��
�
���
���

> 1, �� ≥ 0, � ≠ �. 

If and only if 
ℎ∗ > 1 

Input 
oriented 

VRS 

�∗ = max � 
s.t. ∑ ���� ≤ ��

���
���

�� 

      ∑ ��
�
���
���

= 1, �� ≥ 0, � ≠ �. 

If and only if 
�∗ < 1 

NIRS 

�∗ = max � 
s.t. ∑ ���� ≤ ��

���
���

�� 

      ∑ ��
�
���
���

< 1, �� ≥ 0, � ≠ �. 

If and only if 
�∗ < 1 

NDRS Always feasible 
 
Source: Adapted from from Seiford and Zhu [106] 

Note: CRS = constant returns to scale; DEA = data envelopment analysis; DRS = decrease returns to scale; 

NDRS = non-decrease returns to scale; NIRS = non-increase returns to scale; VRS = variable returns to 

scale, * = optimal solution  

 

The infeasibility always occurs at an extreme data point where no other decision-making 

units can be compared. For an illustration of infeasibility, the output-oriented VRS super-

efficiency model with one input x and one output variable y is used: 
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Maximize   ������      ................................................................................................  (22) 

Subject to   ∑ �����	≤	���
�
���
���

,                         � = 1,2, …,�  

∑ �����≥ �
��������

�
���
���

,               � = 1,2, …, �  

∑ ��
�
�=1
�≠�

= 1  

��≥ 0	,																																														� = 1,2,…, �; 		� ≠ � 

 

In Figure 18, if B is the evaluated DMU, the frontier line is formulated as the line from B 

to C. Then the virtual point, B*, which is an equivalent performance based on the other 

frontier points, A and C, is set by the two convex combinations,	���� + ���� 	≤	��	, d 

���� + ���� 	≤	��∗  and �� + �� = 1, in the model. The super-efficiency of B, ��
�����, 

can be defined by the distance between B and B*. 

 
Figure 18: Super-efficiency of B in the output-oriented super-efficiency variable returns to 

scale data envelopment analysis model 

 

However, when DMU A is evaluated, the frontier line, ������, forms the feasible boundary, 

which is defined by the area of points B', B, and C. As a result, the DMU A is located out 

of the area. The computational error occurs because there is no way to satisfy the 

A 

B 

C 

Input 

Output 

B
* 
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constraints ���� + ���� 	≤	��  and �� + �� = 1. In other words, the virtual DMU, A*, 

which will be compared to A, cannot be defined (Figure 19). In the case of the input-

oriented model, the DMU is the extreme point and is infeasible. 

 

 
Figure 19: Infeasibility of A in the output oriented super-efficiency variable returns to scale 

data envelopment analysis model 

 

 Selecting a Super-Efficiency Model to Resolve Computational 3.4.3.

Infeasibility 

There have been several approaches to resolving the computational infeasibility issue in 

the Malmquist Index or super-efficiency model when a nonconstant returns to scale is 

used. One application of the super-efficiency model is to rank the efficient DMUs. The 

ranking of an infeasible DMU cannot be considered. Xue and Harker [134] suggest an 

approach to ranking infeasible DMUs by adopting the classification of efficient DMUs by 

Charnes, et al. [30]. Xue and Harker [134] defined an infeasible DMU as a strongly 

super-efficient DMU. According to their definition and their finding from the surplus 

slacks of input (in the output-oriented model) or output (in the input-oriented model) of 

the infeasible DMU, the efficiency of the strongly super-efficient DMU is superior to that 

A 

B 

C 

Input 

Output 

B' 
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of the strongly efficient DMU, which is followed by efficient and weakly efficient DMUs, 

in order. However, this approach cannot be considered an ultimate solution for 

infeasibility.  

 

Lovell and Rouse [70] suggested an interesting approach to calculating the super-

efficiency scores of infeasible DMUs. If a DMU is infeasible in the output-oriented 

super-efficiency model, a ratio, �, is applied to the DMU, putting the virtual DMU into 

the feasible area of the model’s constraints. 

 

� = {max	(��,…,��)}
��, where �� = �

��� � ��

��� � ��
� + 1      .............................................  (23) 

 

Their modified output-oriented super-efficiency model is as follows: 

 

Maximize   �′      .......................................................................................................  (24) 

Subject to   ∑ �����+ �����	≤	���
�
���
���

,          � = 1,2,…, �  

∑ �����+ β����� ≥ β����′
�
���
���

,   � = 1,2,…, � 

∑ ��
�
�=1
�≠�

+�� = 1  

��≥ 0 ,                                         � = 1,2,…, �;  � ≠ � 

 

The super-efficiency condition in the model is released, and a general efficiency score, ��, 

is calculated. Then, the original super-efficiency score (������∗) is equivalent to ��∗ �. 
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Figure 20 illustrates how the frontier line is formed using the scale �. The DMU A is an 

infeasible extreme point in the general super-efficiency model. The DMU is projected to 

A' by multiplying the scale (�). Then, the general efficiency model forms a frontier line 

by the convex combination of A', B, and C, with the result that the efficiency score of A' 

is 1. Therefore, the modified super-efficiency score of the DMU A becomes the same 

value as that of the scale (�). 

 

 

 
Figure 20: Modified output-oriented super-efficiency model by Lovell and Rouse [70] 

 

This method has two good properties. First, its computation is robust and always feasible 

because it doesn’t use the constraint required for the super-efficiency model. Second, all 

other feasible DMUs have exactly the same efficiency scores in the super-efficiency 

model. However, the scale (�) Lovell and Rouse [70] defined is arbitrary and results in 

the same super-efficiency scores when there are multiple infeasible DMUs. In an extreme 

case where the output variable (yA) is a very small number, less than 1, the super-

efficiency score becomes an unrealistically big number because it relies on the ratio of yC 

to yA. 

B (xB, yB) 
 

A 
(xA, yA) 

 

C (xC, yC) 

Input 

Output 

A' (xA, yA*	�) 

� = �(
��
��

+ 1)�
��
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On the other hand, Chen [31] used a different approach to define the super-efficiency 

scores of the infeasible DMUs. She considered an output surplus of a super-efficient 

DMU in the output-oriented model, and input saving in the input-oriented model. 

Consider the DMUs A, B, C, and D in Figure 21. The evaluated DMU, B, is projected to 

B*1, which is a convex combination of A and C in the output-oriented super-efficiency 

model. In this case, the super-efficiency (������∗) of B is defined by the output distance 

between B and B*1, which is an output surplus. In the same way, the input-oriented super-

efficiency (������∗) represents the input savings between B and B*2. 

 

 
Figure 21: Chen’s [31] solution to an infeasibility 

 

However, in the case of the DMU A, no convex combination can be defined for project A 

when the output-oriented super-efficiency model is applied. Therefore, Chen [31] 

suggested that the DMU D, which is an efficient DMU, be projected to the same level of 

input as A, and she defines the super-efficiency of A as the output surplus from A to D'. 

The inefficient DMUs are projected using the CRS input-oriented (or output-oriented) 

model in the case of an output-oriented (or input-oriented) super-efficiency model. This 
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C 

Input 

Output 

B
*1 

B
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method is significant in that it provides more reasonable measures of the efficiency of an 

infeasible DMU using output surplus and input savings, compared with the approach by 

Lovell and Rouse [70]. However, this method is not applicable if there is no DMU such 

as DMU D, which is smaller than DMU A. Chen [31] defined the super-efficiency in this 

case as 1. 

 

There are two other studies [33, 66] adopting Chen’s [31] input savings and output 

surplus of the infeasible DMUs, but in a different way. Cook, et al. [33] defined the 

super-efficiencies by moving the evaluated DMU B to both directions of input and output, 

but with a different priority to project to each direction. In the case of the output-oriented 

VRS super-efficiency model, an evaluated DMU is projected to the output direction first, 

until it reaches the frontier line. If the DMU cannot be projected to the frontier line by 

moving it only to the output direction, it is shifted to the input direction and then again to 

the output direction. 

 

For example, the DMUs A, B, and C, using an output-oriented VRS super-efficiency 

model, are illustrated in Figure 22. The evaluated DMUs, A and B, are projected to the 

frontiers, ������ (a) and ������ (b), by moving 1 - � to the output direction and 1 + � to the 

input direction. In the case of the DMU B, � is greater than 1 and � is zero because there 

is no need to move to the input direction, as shown in the left graphic (a) of Figure 22. 

However, the infeasible DMU A should increase both its input and output by 1 + � and   

1 - �, respectively. Therefore, � is less than zero and � is greater than zero. 
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Figure 22: Input saving (or output surplus) in an output-oriented (or input-oriented) model 

 

A user-defined large positive weight, M, is used in the model specification of the DEA 

model in order to incorporate these preferred movements to input and output. The output-

oriented modified VRS super-efficiency model is as follows: 

 

Minimize   � +� × �      ...........................................................................................  (25) 

Subject to   ∑ �����
�
���
���

≤ (1 + δ)���,             � = 1,2, …,� 

∑ �����
�
���
���

≥ (1 − γ)���,            � = 1, 2,…, � 

∑ ��
�
�=1
�≠�

= 1  

δ ≥ 0, ��≥ 0 ,                              � = 1,2, …,�;  � ≠ � 

 

In the case of M = 0, then this is equivalent to the standard output oriented super-efficient 

model with ∅ = 1 -		γ∗. On the other hand, as M goes to infinity, the model approaches 

that of the input oriented super-efficiency model with ∅ =  1 + 	δ∗. 

Input 
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If the model is feasible, the super-efficiency scores are equivalent to 1 -		γ∗ . In the 

infeasible cases, the super-efficiency scores should be modified because the original 

location of the evaluated DMU is moved by the amount of input saving (1 + 	δ∗). Cook, 

et al. [33] defined the modified super-efficiency score of an infeasible DMU as                 

1 + �∗ + 1/(1 − �∗). 

 

Although Cook, et al. [33]’s study provides an advanced approach, applying the concepts 

of input saving in the output-oriented VRS super-efficiency model and output surplus in 

the input-oriented model, it suffers another computational limitation because of the 

arbitrary number of M. The results of the model depend on how a user defines the value 

of M. 

 

Lee, et al. [66], adopting Cook, et al. [33], suggested two stages for the modified super-

efficiency VRS model. At the first stage, the DEA model calculates the input savings (in 

the output-oriented model) or the output surplus (in the input-oriented model), and at the 

second stage, the savings and surplus are incorporated into the DEA model, calculating 

the super-efficiency. The output-oriented model of the input savings at the first stage is 

 

Minimize   ∑ ��
�
���       .................................................................................................  (26) 

Subject to   ∑ �����− �����	≤	���
�
���
���

,            � = 1,2, …,�  

∑ ��
�
�=1
�≠�

= 1  



www.manaraa.com

 

135 
 

��≥ 0 ,                                         � = 1,2,…, �;  � ≠ � 

�� ≥ 0 ,                                         � = 1,2, …,�, 

where �� is the input slack of the ith input variable of the evaluated DMU. 

 

The second stage determines the distance of the shifted target DMU to the frontier by 

holding the input savings constant from the first stage using the model 

 

Maximize   ���      .......................................................................................................  (27) 

Subject to   ∑ �����− �����	≤	���
�
���
���

,            � = 1,2, …,�  

∑ �����≥	������
�
���
���

,                    � = 1,2, …,� 

∑ ��
�
�=1
�≠�

= 1  

��≥ 0 ,                                        � = 1, 2,…,�;  � ≠ �. 

 

Finally, the modified super-efficiency score, ��, is calculated using 

 

if � ≠ Φ ,  
�

���
= �

∑
������

∗���
���

�∈�

|�|
+

�

���
∗,      ......................................................................... (28) 

if � = Φ , 
�

���
=

�

���
∗,     .................................................................................................  (29) 

where � = {�|��
∗ > 0}. 
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If an evaluated DMU is super-efficiency feasible, there is no input savings (��
∗= 0) and 

the efficiency score (��∗) at the second stage is equivalent to the modified super-efficiency 

score (��). This method doesn’t require a user defined arbitrary number while Cook, et al. 

[33] used a user defined number M. 

 

Another difference between the two methods is in the way they define the modified 

super-efficiency scores using the input savings and output surplus. In the output-oriented 

model, for example, Cook, et al. [33] applied the radial input savings and output surplus, 

which results in a single value of savings and surplus each, whereas Lee, et al. [66] used 

the nonradial model. The latter method uses the average of multiple savings (in the 

output-oriented model) or surplus (in the input-oriented model). As a result, the modified 

super-efficiency scores of an infeasible DMU from Lee, et al.’s [66] method tend to be a 

little bit higher than the ones from Cook, et al. [33]. 

 

For a detailed comparison of the three methods (Lovell and Rouse [70], Cook, et al. [33] 

and Lee, et al. [66]), the super-efficiency scores are tested using published data from 

Cook, et al. [33] for both input- and output-oriented models (Table 22). (See [33] for 

detailed information about the data.) 
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Table 22: Data to test the three methods 

Decision-
Making Unit 

(City) 

Input Variables Output Variables 

House 
price 

Rental Violent Income 
Bachelor’s 

degree 
Doctorate 

1 Seattle  586 581 1,193.06 46,928 0.6534 9.878 

2 Denver  475 558 1,131.64 42,879 0.5529 5.301 

3 Philadelphia  201 600 3,468 43,576 1.135 18.2 

4 Minneapolis  299 609 1,340.55 45,673 0.729 7.209 

5 Raleigh  318 613 634.7 40,990 0.319 4.94 

6 St. Louis  265 558 657.5 39,079 0.515 8.5 

7 Cincinnati  467 580 882.4 38,455 0.3184 4.48 

8 Washington  583 625 3,286.7 54,291 1.7158 15.41 

9 Pittsburgh  347 535 917.04 34,534 0.4512 8.784 

10 Dallas  296 650 3,714.3 41,984 1.2195 8.82 

11 Atlanta  600 740 2,963.1 43,249 0.9205 7.805 

12 Baltimore  575 775 3,240.75 43,291 0.5825 10.05 

13 Boston  351 888 2,197.12 46,444 1.04 18.208 

14 Milwaukee  283 727 778.35 41,841 0.321 4.665 

15 Nashville  431 695 1,245.75 40,221 0.2365 3.575 

 
Source: Cook, et al. (2009) [33] 

 

The super-efficiency scores of the four methods, including the general model, are 

summarized in Table 23. Three cities, including Philadelphia, Washington, and Boston, 

are infeasible according to the general super-efficiency model. Lovell and Rouse’s [70] 

super-efficiency scores for the three cities are identical, and the magnitude seems to be 

unrealistic. The scores from the other two methods (Cook, et al. [33] and Lee, et al. [66]) 

are very close and present different performances for all the DMUs. The scores from the 
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three cities that are infeasible DMUs are higher in Lee, et al. [66] than those in Cook, et 

al. [33]. 

 

Table 23: Comparisons of the results from the four super-efficiency methods 

Decision-
Making Unit 

(City) 

General SE VRS 
Lovell and Rouse 

(2003) 
Cook, et al. 

(2009) 
Lee, et al. (2011) 

IO SE 
(theta) 

OO SE 
(1/phi) 

IO SE 
(theta) 

OO SE 
(1/phi) 

IO 
SE 

(theta) 

OO 
SE 

(1/phi) 

IO 
SE 

(theta) 

OO 
SE 

(1/phi) 

1 Seattle  1.44 1.09 1.44 1.09 1.44 1.09 1.44 1.09 

2 Denver  1.02 1.05 1.02 1.05 1.02 1.05 1.02 1.05 

3 Philadelphia  Infeasible Infeasible 6.85 8.26 2.89 3.52 2.93 3.52 

4 Minneapolis  1.23 1.09 1.23 1.09 1.23 1.09 1.23 1.09 

5 Raleigh  1.17 Infeasible 1.17 8.26 1.17 2.08 1.17 2.08 

6 St. Louis  1.52 Infeasible 1.52 8.26 1.52 2.77 1.52 2.83 

7 Cincinnati  0.95 0.90 0.95 0.90 0.95 0.90 0.95 0.90 

8 Washington  Infeasible 1.53 6.85 1.53 2.54 1.53 2.45 1.53 

9 Pittsburgh  1.05 Infeasible 1.05 8.26 1.05 2.08 1.05 2.08 

10 Dallas  0.93 0.95 0.93 0.95 0.93 0.95 0.93 0.95 

11 Atlanta  0.77 0.81 0.77 0.81 0.77 0.81 0.77 0.81 

12 Baltimore  0.74 0.80 0.74 0.80 0.74 0.80 0.74 0.80 

13 Boston  Infeasible 1.32 6.85 1.32 2.59 1.32 2.60 1.32 

14 Milwaukee  1.07 1.03 1.07 1.03 1.07 1.03 1.07 1.03 

15 Nashville  0.80 0.87 0.80 0.87 0.80 0.87 0.80 0.87 

 
Note: IO = input oriented, OO = output oriented, SE = super-efficiency; VRS = variable returns to scale.  

 

In the present study, Lee, et al.’s [66] modified VRS super-efficiency model is adopted 

because of its computational reliability and the sound logical approach of using the input 

savings or output surplus of each variable. 
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 Three-Stage Variable Returns to Scale Super-Efficiency Model  3.4.4.

The strengths and limitations of the various super-efficiency models are summarized in 

Table 24. 

 

Table 24: Strengths and limitations of the current super-efficiency models 

Model Strength Limitations 

Lovell and 
Rouse 
(2003)  

The model is easy to use and robust 
in terms of computation, and 
identifies infeasible decision-making 
units. 

The super-efficiency scores of the 
infeasible decision-making units are 
not comparable to other super-
efficiency scores because the scores 
depend on the ratio of the data. 

Cook, et 
al. (2009) 

The model generates reasonable 
super-efficiency scores for infeasible 
decision-making units using both 
input savings and output surplus.  

The model is not robust and results 
can be different depending on how 
one defines the arbitrary number in 
the objective function. 

Lee, et al. 
(2011) 

The model produces reasonable 
super-efficiency scores for infeasible 
decision-making units, using input 
savings (in the output-oriented 
model) or output surplus (in the 
input-oriented model) of all input 
variables (in the output-oriented 
model) or output variables (in the 
input-oriented model).  

The model is reliable in 
computation but no zero-data issue 
is addressed. 

 

Although each method provides unique benefits in finding the super-efficiency scores, 

none of them is applicable if zero values are associated with the data. The licensing of the 

U.S. academic research institution technologies in the early 1990s was not active, and 

there were several institutions that didn’t have experience with start-up companies. If 

these data are applied to any of the super-efficiency models, it will result in infeasibility 

or zero-efficiency scores. Therefore, this study employs a three-stage DEA model (Figure 
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23) that allows zero values in data and resolves the general infeasibility issue by adopting 

the nonradial model (Russell measure) of Färe and Lovell [42] and the modified super-

efficiency model of Lee, et al. [66]. 

 

 
 

Figure 23: A new three-stage data envelopment analysis model 
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A detailed description of the three-stage DEA model process is presented in Figure 24. 

 

 

Figure 24: A new output-oriented super-efficiency variable returns to scale model 
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A. Step 4-1: Identify infeasibility 

Lee, et al.’s [66] output-oriented VRS super-efficiency model is applied to measure the 

super-efficiency scores of the licensing activities of 46 U.S. academic research 

institutions. Their two-stage model is as follows. 

 

1) Stage I: input saving ��
∗ 

Minimize   ∑ ��
�
���       ...........................................................................................  (30) 

Subject to   ∑ �����− �����	≤	���
�
���
���

,       � = 1,2,…, �   

 ∑ ��
�
�=1
�≠�

= 1  

 ��≥ 0 ,                                   � = 1, 2,…,�;  � ≠ � 

�� ≥ 0 ,                                  � = 1,2,…, �, 

where 

xi,j = the ith input of the jth university, 

o = the institution being evaluated in the iteration, 

λj = the coefficient of university j used in creating a performance target for university o,  

ti = the input saving of ith input of the oth university, 

m = the number of input variables, and 

n = the number of output variables. 
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2) Stage II: efficiency ���
∗
 

Maximize   ���      .................................................................................................  (31) 

Subject to   ∑ �����− ��
∗���	≤	���

�
���
���

,     � = 1,2,…, �  

∑ �����≥ ������
�
���
���

,                 � = 1,2,…, �	 

∑ ��
�
�=1
�≠�

= 1  

��≥ 0 ,                                     � = 1,2,…, �;  � ≠ �, 

where 

ti
* = the input savings of ith input of the oth institution calculated at Stage I, 

yrj = j’s output of the institution j, and 

s = the number of outputs. 

 

B. Step 4-2: Identify zero issue 

If ��∗ of a DMU from Stage I is bounded to zero or infinite, the DMU is associated with 

zero data in its output variable. The case of zero data in the input variable is excluded 

from the discussion because there is no research expenditure of zero in the licensing data. 

The infinite or zero efficiency scores result from the models when the output variable of 

the evaluated DMUo is zero (Type 1) or one of the evaluated DMUk has zero data in its 

output variable (Type 2). 
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Type 1: Infinite when the evaluated DMUo has a zero for one or more outputs. 

∑ �����
�
���
���

≥ ���(��� = 0)      .....................................................................................  (32) 

 

If the output variable r of the evaluated DMUo is zero, ���  increases infinitely to 

maximize it because the left-hand side of the constraint is always greater than the right-

hand side. 

 

Type 2: Bounded to zero efficiency when zero is in the referenced DMUk; 

(�� = 1)(��� = 0) ≥ ������      .................................................................................  (33) 

 

In cases when the output variable r of the DMUk (the only DMU referenced) is zero, ��� 

is restricted to zero because the left-hand side of the constraint is zero. 

 

C. Step 4-3: Modify ��∗ using the nonradial super-efficiency model 

In his study presenting a slacks-based measure (SBM) of efficiency, Tone [124] 

identified a similar issue with regard to zero data. He assumed that the DMU may have 

no function to produce output, or it may have the capability to function but may not be 

utilized yet. In the first case, the associated slack variable is excluded from the objective 

function. If the latter case is plausible, a small positive number replaces the zero. This 

approach allows one to measure an approximate efficiency score of a DMU that doesn’t 
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have an output value in one or some of the output variables, using the nonradial 

efficiency of each output variable. 

 

Therefore, this study employs a method to deal with the zero issue by using a nonradial 

DEA model. The licensing data fits into Tone’s [124] second case, the assumption of a 

DMU with zero data. It cannot be assumed that any institution is prohibited from 

producing a certain licensing output or doesn’t intend to patent or license its technologies 

at all. In such a case, Tone suggested assigning a small number for the variable. However, 

this will result in arbitrary efficiency scores. Therefore, the present study excludes the 

nonradial super-efficiency score of the output variable if it is zero or infinite, and uses the 

average of other DMU efficiency scores. This approach is similar to the solution Tone 

adopted for the first case. 

 

For this purpose, a nonradial super-efficiency model is used, adopting both the super-

efficiency model of Lee, et al. [66] and the output-oriented nonradial slack-based super-

efficiency model of Cooper, et al. [35]. 

 

Cooper, et al. [35] adopted the slack-based model developed by Tone [125] and 

suggested following the output-oriented nonradial slack-based DEA model as follows: 

 

Minimize   
�

(
�

�
)∑ ∅��

�
���

      .....................................................................................  (34) 

Subject to   ∑ �����	≤	���
�
���
���

,                   � = 1,2, …,�  
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 ∑ �����≥ ∅ �����
�
���
���

,              � = 1,2,…, �	 

 ��≥ 0 ,                                    � = 1,2,…, �;  � ≠ � 

 

Applying nonradial specifications to the model by Lee, et al. [66], the nonradial super-

efficiency model is as follows: 

 

1) Stage I: input saving ��
∗ 

Minimize   ∑ ��
�
���       ...........................................................................................  (35) 

Subject to   ∑ �����− �����	≤	���
�
���
���

,       � = 1,2,…, �   

 ∑ ��
�
�=1
�≠�

= 1  

 ��≥ 0 ,                                    � = 1,2,…, �;;  � ≠ � 

 �� ≥ 0 ,                                     � = 1,2,…, � 

 

2) Stage II: efficiency ∅��
∗ for a DMU with zero data in output 

Minimize   
�

(
�

�
)∑ ∅��

�
���

      .....................................................................................  (36) 

Subject to   ∑ �����− ��
∗���	≤	���

�
���
���

,      � = 1, 2,…,�  

 ∑ �����≥ ∅ �����
�
���
���

,               � = 1, 2,…,�	 

 0 ≤ ∅ �� ≤M 

 ∑ ��
�
�=1
�≠�

= 1  
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 ��≥ 0 ,                                    � = 1,2,…, �;  � ≠ �, 

where 

∅��  = the output r efficiency score of a DMUo , and 

M = a user-defined large number to limit unbounded efficiency due to the Type 1 zero-

data issue. 

 

The efficiency score (∅��) is allowed from 0 to the large number M in order to represent 

Type 1 and Type 2 zero data. 

 

The previous super-efficiency score (���
∗
), which is associated with zero data, is replaced 

by the average nonradial efficiency scores, excluding an efficiency of zero or M, using 

���
∗
=

∑ ∅∗���∈�

|�|
,  � = 1,2, …,�; � = 1,2, …,�,     ........................................................  (37) 

where 

� = {�|0 < ∅ ∗
�� < � }, and 

|�| = cardinality of Z. 

 

D. Step 4-4: Modify super-efficiency scores 

Finally, the modified super-efficiency scores incorporating both efficiencies from Step 1 

and nonradial efficiencies, which are replaced due to the zero issue at Step 3, are 

calculated using the term defined by Lee, et al. [66]: 
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if � ≠ Φ ,  
�

���
=

∑
������

∗���
���

�∈�

|�|
+

�

���
∗,      ..........................................................................  (38) 

if � = Φ , 
�

���
=

�

���
∗,     .................................................................................................  (39) 

where � = {�|��
∗ > 0}. 

 

 Malmquist Index 3.4.5.

The Malmquist Index measures the difference in the relative distances of a DMU from 

time t to t + 1. The index tells us how the technology changes over time. The Malmquist 

decompositions can explain in detail whether the change is due to the efficiency change 

or to technical change. The traditional Malmquist Index was suggested by Caves, et al. 

[26] and Fare, et al. [41], who further developed it to incorporate a variable returns to 

scale, which became the widely used Malmquist Index. 

 

Fare, et al. [41] suggested two and three decomposition of the Malmquist Index. The 

former decomposes the Malmquist Index into efficiency change and technical change, 

whereas the latter decomposes it into EC, TC, and scale efficiency change. Ray and Desli 

[101] also provided a method for three decompositions. The difference in the two 

approaches is that Fare, et al.’s (1978) [42] EC and TC are based on variable returns to 

scale and constant returns to scale, respectively, whereas Ray and Desli’s (2000) EC and 

TC are both based on the VRS model. As a result, their scale efficiency changes have 

mathematically different forms. In the present study, the original approach of the 

decomposition by Fare, et al. (1978) is used to measure changes in university technology 
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commercialization efficiency. The two and three decompositions of the Malmquist Index 

by Fare, et al. are as follows: 

 

The two decompositions are: 

M =
��
���(����,	����)

� �
�(��,	��)

× �
��
�(����,	����)

� �
���(����,	����)

×
��
�(��,	��)

� �
���(��,	��)

�

�

�
= EC� × TC�      ..........................  (40)  

EC� =
��
���(���)

� �
�(�)

      .....................................................................................................  (41) 

TC� = �
��
�(���)

� �
���(���)

×
��
�(�)

� �
���(�)

�

�

�
      ...................................................................................  (42) 

 

The three decompositions are: 

M �(x
�,	y�, x���, 	y���)= M �(x

�,	y�, x���, 	y���)× ε      ..............................................  (43) 

=	EC� ×
����(����,	����)

��(��,	��)
× TC� ×

���

���
		  

 = EC� × TC� ×
����(����,	����)

��(��,	��)
	 

 S�(x�,	y�) =
��
�(��,	��)

� �
�(��,	��)

      ............................................................................................  (44) 

 

Where 

D = efficiency, equivalent to ∅ 

�� (��, 	��)= �� (�): distance (efficiency) of a technology (��, 	��) to the frontier at 

time t, 

��(��,	��) = scale efficiency change of a technology (��, 	��), 

EC - efficiency change, 
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TC - technical change, 

subscript v = DEA model based on VRS (variable returns to scale), and 

subscript c = DEA model based on CRS (constant returns to scale). 

 

A simple example of the Malmquist decomposition by Fare, et al. (1994) shows how the 

index indicates the efficiency changes of an institution (A) (Table 25). The DEA 

efficiency of the institution is defined by the distance from A to the frontier line (F). 

Therefore, the efficiency of A could remain the same or could change (increase or 

decrease), depending on the change in the location of the institution and the change of the 

frontier in the following year t + 1. Twelve cases are defined along with the changes of 

the institution (A) and frontier (F) from t to t + 1, in the table. To simplify the example, it 

is assumed that the frontier doesn’t retract at t + 1. 

 

Table 25: Changes in the location of the institution and frontier from t to t + 1 

 
Changes of the frontier from t to t + 1 

No change Expand High expand 

Changes 
of the 

location of 
A from t 
to     t + 1 

No change 
At  = At+1 
Ft = Ft+1 

At  = At+1 
Ft < Ft+1 

At  = At+1 
Ft << Ft+1 

Close to F 
At  < At+1 
Ft = Ft+1 

At  < At+1 
Ft < Ft+1 

At  < At+1 
Ft << Ft+1 

Very close to F 
At  << At+1 

Ft = Ft+1 
At  << At+1 

Ft < Ft+1 
At  << At+1 
Ft << Ft+1 

Far from F 
At  > At+1 
Ft = Ft+1 

At  > At+1 
Ft < Ft+1 

At  > At+1 
Ft << Ft+1 

 
Note: A = DMU A, F = frontier  

 

The distance from the institution (A) of the year t and t + 1 to the frontier (F) of the year t 

and t + 1 is defined as D(frontier year) (institution year) for each case. For example, the 
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distance from A at t + 1 to the frontier at t is Dt (t + 1). The values of the efficiency 

changes, technical changes, and Malmquist Index of the twelve cases are provided in 

Figure 25. 

 

 

Figure 25: Demonstration of Malmquist Index, efficiency changes, and technical changes for 
the twelve cases 

 

The example shows that the EC is influenced by the TC even though there is no change 

in outputs of the institution. The DEA efficiency scores in nature present the relative 

efficiency of institutions, and the changes in the efficiency score of an institution can be 

influenced by any change in both the evaluated institution and other institutions. For 

example, even though the institution stays at the same level of outputs as the previous 

year, the efficiency decreases if the other efficient institutions improve, so the frontier 
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expands. Therefore, caution is required when interpreting the result of the EC by itself. 

On the other hand, the Malmquist Index provides a more reliable indication of the change 

of an institution by compensating the amount of efficiency change caused by frontier 

expansion (TC). 

 

 Verification of the Present Study 3.5.

This is an exploratory study identifying relationships between characteristics and 

licensing efficiency and, through data analysis, evaluating changes in the licensing 

performance of 46 U.S. academic institutions. For this purpose, two methods have been 

developed: a time-lag identifying process and a modified VRS super-efficiency DEA 

model of the Malmquist Index. First, the time-lag method is verified by testing several 

simulation data sets designed to emulate licensing lag behavior. The current econometrics 

approach also is compared to the suggested methods to discuss its limitations. Second, 

the DEA model and coding are verified by testing the published data set and comparing it 

with current models. 

 

One licensing expert (a technology transfer lawyer) was selected to verify the identified 

time lags. The expert was asked to review the licensing process defined and the time lags 

observed in this study. The expert checked whether the identified time lags between each 

pair of licensing variables reflected real cases, based on his experience and patent law. He 

confirmed that all the time lags reflect reality. 
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4 Chapter 4. Verification of the Process Identifying Time-Lag Coefficients Using 

Simulated Data 

The current econometric methods identifying lag effects of an event of interest using 

regression model are not appropriate for licensing in nature, as described in the 

methodology chapter. In this section, an exploratory approach testing simulated data is 

applied to understand the behavior of the distributed lag model with two coefficient 

restriction models, the unstructured and polynomial models, and to verify the suggested 

time-lag identifying process. Also discussed are the limitations of the lag period 

determination methods, AIC and BIC, and the polynomial coefficient structure used for 

the licensing data. 

 

In order to verify the time-lag approach developed in this dissertation, the following 

additional research questions are explored. 

 What does a negative correlation mean in the distributed lag model? 

 Does the model correctly reflect the changes of the independent variables at single 

or multiple periods? 

 Which coefficient structure is appropriate for the licensing data, the unstructured 

model (unrestricted lag) or the polynomial structure (polynomial distributed lag 

[PDL])? 
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 Assumptions 4.1.

Several lag effects patterns in licensing are assumed to generate data sets reflecting the 

real situation of licensing activities. First, unlike in economics, which is one of the 

popular applications of the time-lag model, the time-lag effect of licensing activity could 

be either continuous or discontinuous. Second, there exists a delay between a change in 

licensing activity and the resulting outcome. The time-lag identifying process should be 

able to detect these two different lag behaviors correctly. 

 

 Distributed Lag Model and Lag Structure Setting 4.2.

Two cases are explored through the tests to understand how the lag patterns affect 

regression coefficients. The time-lag relationship between the independent and dependent 

variables is predefined. 

 

Time t is defined as 1991 to 2007. The distributed lag model is 

�� = � + ���� + ������ + ������ + ������ + ������ + ��,      ................................. (45)  

where �� is the result of licensing activity � at year t; ��…���� are lagged independent 

variables from t to t - 3; �� …	���� are time-lag coefficients; and �� is a regression error 

term following an N(1, 0) distribution. 

 

Data for both independent variables, from lag 0 to lag 3 of a licensing input, and a 

dependent variable of licensing outcome from 1991 to 2007 are generated in such a way 

as to produce the lag behaviors defined below. 
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 Case 1: Continuous lag effects 4.2.1.

First, an evenly distributed (uniform) lag effect of 20% during the lag periods from t (lag 

0) to t - 4 (lag 4) are defined as shown in Figure 26.  

 

 

Figure 26: Uniform lag structure of Case 1 

 

Second, an asymmetric lag effect is applied to the continuous case. A dependent variable 

at year t, ��, is a result of 20% of independent variable � at year t, 50% at year t - 1, 20% 

at year t - 2, and 10% at year t - 3. Therefore, the estimated lag coefficient values of ��, 

��, �� , and ��  from the time-lag identifying process should be 0.2, 0.5, 0.2, and 0.1, 

respectively, as shown in Figure 27. 
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Figure 27: Non-uniform lag structure of Case 1 

 

 Case 2: Discontinuous lag effects 4.2.2.

To test whether the time-lag identifying process using the unrestricted model can identify 

true lags, discontinuous lag effects are also assumed. Data for Case 2 is generated in such 

a way that 20% of the independent variable at year t - 1 (lag 1), 50% at t - 3 (lag 3), and 

30% at t - 4 (lag 4) are associated with the value of the dependent variable at year t. The 

coefficient structure of the second case is illustrated in Figure 28. 

 

 

Figure 28: Lag structure of Case 2 
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 Data Generation for the Test 4.3.

The data sets for the examination are generated by the relationships between the 

independent variables with lag coefficients and the dependent variable. In the case of the 

continuous lag effect, three data sets are generated. The first data set is the basis of the 

other data sets, which adds variances on the basis for the independent variables. The 

second data set includes an increase of independent variables at a certain time. The third 

data set includes two independent variables that have increases at two time periods and 

are the same in other periods. In addition to these three data sets, the fourth data set is 

added to analyze the discontinuous case. 

 

The data for the dependent variables are calculated using the equations for the predefined 

lag relationships. The time period is defined from 1991 to 2007, reflecting actual 

licensing data from the Association of University Technology Managers, to be analyzed 

later. The data sets of both independent and dependent variables include random numbers 

representing error terms with a normal distribution, N (mean, standard deviation). The 

equations used to generate the data set are as follows: 

 

The simulated data of the independent variables at time t is generated by 

�� = �(�, 1)      .........................................................................................................  (46) 

 

The simulated data of the dependent variables at time t is generated by 

�� = ���� + ������ + ������ + ������ + ������ + �(0,0.01)      ...........................  (47) 
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The � value and its changes, along with years and data sets, are illustrated in Figure 29. 

 

 
Figure 29: � values of the four data sets 

 

Finally, the simulated data sets used are presented in Table 26. 

  

0

10

20

30

40

50

60

1
9

91

1
9

93

1
9

95

1
9

97

1
9

99

2
0

01

2
0

03

2
0

05

2
0

07V
al

u
e

 o
f 

th
e

 in
d

e
p

e
n

d
e

n
t 

va
ri

ab
le

Time

Data set 1

0

10

20

30

40

50

60

1
9

91

1
9

93

1
9

95

1
9

97

1
9

99

2
0

01

2
0

03

2
0

05

2
0

07V
al

u
e

 o
f 

th
e

 in
d

e
p

e
n

d
e

n
t 

va
ri

ab
le

Time

Data set 2

0

10

20

30

40

50

60

1
9

91

1
9

93

1
9

95

1
9

97

1
9

99

2
0

01

2
0

03

2
0

05

2
0

07V
al

u
e

 o
f 

th
e

 in
d

e
p

e
n

d
e

n
t 

va
ri

ab
le

Time

Data set 3 and 4



www.manaraa.com

 

159 
 

Table 26: The three data sets for case 1 

Year 

Case 1: Continuous Lag Effect Case 2: Discontinuous 
With Non-Uniform Lag 

Structure  Case 1.1: Uniform with 
no change 

Case 1.2: Non-uniform lag structure 

Data set 1 Data set 2 Data set 3 Data set 4 

Independent 
variable 

(x1) 

Dependent 
variable 

(y1) 

Independent 
variable 

(x2) 

Dependent 
variable 

(y2) 

Independent 
variable 

(x3) 

Dependent 
variable 

(y3) 

Independent 
variable 

(x4) 

Dependent 
variable 

(y4) 

1991 9.09  11.01  9.22  7.61  

1992 9.96  10.74  9.69  10.79  

1993 9.72  10.58  8.86  11.08  

1994 9.64  10.01  11.15  10.41  

1995 8.14 9.31 9.12 10.03 11.35 10.59 9.03 9.76 

1996 8.23 9.13 11.52 9.92 8.78 10.55 9.55 10.57 

1997 9.68 9.09 9.73 10.55 9.97 9.77 12.35 10.44 

1998 11.63 9.48 9.99 10.07 30.27 13.91 29.86 10.10 

1999 9.81 9.51 11.36 10.37 10.03 19.98 9.51 13.46 

2000 9.68 9.82 49.10 18.48 48.67 21.80 50.02 10.94 

2001 9.66 10.09 9.68 29.76 10.13 31.38 10.97 28.62 

2002 8.84 9.93 10.70 17.94 9.68 17.73 8.89 15.90 

2003 11.43 9.89 9.02 13.99 10.83 13.91 11.76 29.65 

2004 9.13 9.76 10.00 9.61 10.07 10.39 10.48 22.87 

2005 9.55 9.72 11.06 10.08 10.06 10.18 9.34 9.84 

2006 8.21 9.44 8.62 10.15 10.31 10.17 9.89 10.42 

2007 8.48 9.37 9.72 9.47 8.81 9.93 11.14 10.75 
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 Results 4.4.

 Unit Root Test Using Augmented Dickey-Fuller Test and Data 4.4.1.

Transformation 

The ADF test was applied to see whether the simulated data has a unit root. The statistics 

package Stata was used for the test. The null hypothesis of the test is that the data include 

a unit root and is therefore nonstationary. The null hypothesis is rejected if the p-value is 

greater than 0.05. The result shows that all dependent variables in the four data sets are 

stationary (Table 27). Because all data follow the stationary process, the data can be used 

for further time series analysis without taking first-order difference (delta). 

 

Table 27: Augmented Dickey-Fuller test result for data set 1 

Data Set Test Statistic, Z(t) P-Value Result 

Data Set 1 (y1) -1.17 0.67 Stationary 

Data Set 2 (y2) -1.70 0.43 Stationary 

Data Set 3 (y3) -1.49 0.54 Stationary 

Data Set 4 (y4) -2.42 0.14 Stationary 

 

 Time-Lag Period 4.4.2.

The suggested time-lag identifying method, using correlation, is compared with the 

current method, using AIC and BIC. 
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A. Akaike’s Information Criterion and Bayesian Information Criterion 

In the model, the two information criteria, AIC and BIC, decline as more lags are added, 

as summarized in Table 28. If AIC and BIC are used for the lag period, the maximum lag, 

6 years, is selected, regardless of which data sets are used because both AIC and BIC are 

minimum at lag 6. Therefore, both information criteria are not applicable to the licensing 

data. 

 

Table 28: Result of Akaike’s Information Criterion and Bayesian Information Criterion 
tests 

Data Set / Statistics 
Model (Independent Variables From Lag 0 to Each Duration) 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 

Data Set 1 

Adjusted 
R2 

0.04 0.09 0.28 0.56 1.00 1.00 1.00 

AIC 8.12 8.06 5.71 -0.07 -85.19 -75.15 -81.46 

BIC 9.25 9.76 7.97 2.75 -81.80 -71.76 -78.28 

Data Set 2 

Adjusted 
R2 

-0.01 0.81 0.96 1.00 1.00 1.00 1.00 

AIC 85.02 63.75 45.49 -78.08 -76.84 -68.47 -59.85 

BIC 86.15 65.44 47.75 -75.26 -73.45 -65.08 -56.67 

Data Set 3 

Adjusted 
R2 

0.00 0.84 0.96 1.00 1.00 1.00 1.00 

AIC 87.38 64.39 46.72 -71.68 -72.11 -64.41 -58.33 

BIC 88.51 66.08 48.98 -68.85 -68.72 -61.02 -55.15 

Data Set 4 

Adjusted 
R2 

-0.05 0.11 0.02 0.69 1.00 1.00 1.00 

AIC 90.98 89.59 91.53 77.15 -84.20 -78.27 -70.29 

BIC 92.11 91.28 93.79 79.97 -80.82 -74.87 -67.11 
 
Note: AIC = Akaike’s information criterion; BIC = Bayesian information criterion 
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B. Correlation Matrix 

Correlations among the dependent variable and independent variables with time lags 

from 0 to 6 are summarized in Table 29.  

 

Table 29: Correlation between the output variable and time lag of the independent variable 

Data Set 
Time Lag of Independent Variable x 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 

Data Set 1 y1 0.13 0.29 0.51 0.34 0.07 -0.13 -0.22 

Data Set 2 y2 0.25 0.86 0.25 0.02 -0.21 -0.18 -0.21 

Data Set 3 y3 0.26 0.83 0.25 0.29 -0.17 -0.27 -0.32 

Data Set 4 y4 -0.28 0.47 -0.10 0.82 0.31 0.03 -0.05 

 

The time-lag variables showing positive correlations with the dependent variable are 

selected as potential time-lag periods. The results show that the time-lag periods selected 

by correlation are consistent with the predefined time-lag periods, except in the case of 

Data Set 4, as shown in Table 30. The results of Data Set 4 include the fault period, lag 5. 

 

Table 30: Comparison of selected lag periods and predefined lag periods 

Data Set 
Selected Time-Lag Periods by 
Correlation 

Predefined Time-Lag Periods 

Data Set 1 Lag 0–4 Lag 0–4 

Data Set 2 Lag 0–3 Lag 0–3 

Data Set 3 Lag 0–3 Lag 0–3 

Data Set 4 Lag 1, 3, 4, and 5 Lag 1, 3, and 4 
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C. Regression Model to Define Correct Lag Periods 

The following regression model, using only selected potential lag periods for each data 

set, is tested to identify correct lag periods from among the potential lag periods produced 

by correlation. The regression model of each data set is as follows: 

 

Model 1 for Data Set 1: 

�1� = � + ���1� + ���1��� + ���1��� + ���1��� + ���1��� + ��      ....................  (48) 

 

Model 2 for Data Set 2: 

�2� = � + ���2� + ���2��� + ���2��� + ���2��� + ��     ......................................  (49) 

 

Model 3 for Data Set 3: 

�3� = � + ���3� + ���3��� + ���3��� + ���3��� + ��     ......................................  (50) 

 

Model 4 for Data Set 4: 

�4� = � + ���4��� + ���4��� + ���4��� + ���5��� + ��      ..................................  (51) 

 

The results of the regression are summarized in Table 31. All the potential lag periods in 

data sets 1, 2 and 3 are significant. Therefore, they are defined as actual time lags to be 

analyzed for lag effects. In these three cases, the regression coefficients of the lags 

represent actual lag effects because all of the lags are significant. Therefore, no further 
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regression is required. However, the regression results for Data Set 4 show that the 

potential lag 5 is not significant and should be excluded. 

 

Table 31: Regression results of potential lag periods 

Variables / 
Statistics 

Models 

Data Set 1 Data Set 2 Data Set 3 Data Set 4 

Lag 0 
0.20 

(0.00) 
0.20 

(0.00) 
0.20 

(0.00) 
- 

Lag 1 
0.20 

(0.00) 
0.50 

(0.00) 
0.50 

(0.00) 
0.20 

(0.00) 

Lag 2 
0.20 

(0.00) 
0.20 

(0.00) 
0.20 

(0.00) 
- 

Lag 3 
0.20 

(0.00) 
0.10 

(0.00) 
0.10 

(0.00) 
0.50 

(0.00) 

Lag 4 
0.20 

(0.00) 
- - 

0.30 
(0.00) 

Lag 5 - - - 
0.00 

(0.22) 

Probability > F 0.00 0.00 0.00 0.00 

Adjusted R2 1.00 1.00 1.00 1.00 

 

 Time-Lag Coefficients 4.4.3.

A. Nonstructured Regression Model (Ordinary Least Squares) 

The potential lag periods in Data Set 4 include a fake lag period, t - 5, as shown in the 

previous regression. Therefore, time-lag coefficients for Data Set 4 are defined using a 

regression model with lags 1, 3, and 4 only. 

 

Model 5 for Data Set 4: 

�4� = � + ���4��� + ���4��� + ���4��� + ��      ....................................................  (52) 
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The regression results show that the three lag periods are significant (Table 32). 

 

Table 32: Time-lag coefficients for data set 4 

 
Variables 

Lag 1 Lag 3 Lag 4 Constant 

Coefficients 
0.20 

(0.00) 
0.50 

(0.00) 
0.30 

(0.00) 
0.00 

Statistics Probability > F: 0.00, R2: 1.00 

 

The time-lag coefficients from Table 31 and Table 32 were compared with the predefined 

time-lag structure (Table 33). The observed lag structures using the suggested process 

successfully identified the actual lag periods and their effect. 

 

Table 33: Predefined and observed lag structures 

Lag Periods 
Predefined Lag Structure Observed Lag Structure 

Data 
Set 1 

Data 
Set 2 

Data 
Set 3 

Data 
Set 4 

Data 
Set 1 

Data 
Set 2 

Data 
Set 3 

Data 
Set 4 

Lag 0 0.20 0.20 0.20 - 0.20 0.20 0.20 - 

Lag 1 0.20 0.50 0.50 0.20 0.20 0.50 0.50 0.20 

Lag 2 0.20 0.20 0.20 - 0.20 0.20 0.20 - 

Lag 3 0.20 0.10 0.10 0.50 0.20 0.10 0.10 0.50 

Lag 4 0.20 - - 0.30 0.20 - - 0.30 

Lag 5 - - - - - - - - 

 

B. Polynomial Distributed Lag Method 

Polynomial lag structure is similar to the behavior of the time-lag effects of the licensing 

data, as described in Chapter 3. Therefore, the PDL method is tested to determine 
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whether it can measure the time-lag effect of licensing, although the data is different from 

the data in typical applications of the PDL method, such as economic and agriculture data. 

 

Polynomial coefficient of the regression is expressed as follows [81, 92]: 

�� = ∑ ���
��

��� ,     .................................................................................................  (53) 

where 

d = the degree of the polynomial (k=0, 1, .., d), 

m = the lag index (m = 0, 1, …, n), and 

��  = the new parameters of the PDL model. 

 

If the second degree (d = 2) is assumed, then the PDL regression model using the 

polynomial structure is 

 

�� = � + (��)�� + (�� + �� + ��)���� +      ............................................................  (54) 

(�� + 2�� + 4��)���� + ⋯+ (�� + ��� + ����)���� + ��  

 

McDowell [81] provided a Stata package procedure to estimate the PDL model. This 

study adopts the script language and estimates the PDL coefficients using data sets 3 

(continuous lag) and 4 (discontinuous lag). The script language is provided in Appendix 

A. Different polynomial degrees and lag periods are applied to test their applicability to 

the licensing data. 
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1) Continuous time-lag effect (Data Set 3) 

The results of the PDL regression models using the continuous lag case of Data Set 3 are 

provided in Table 34. The PDL model requires at least four lag periods, so lag periods 4 

and 5 with second- and third-degree polynomials are applied. None of the models 

perfectly matches the predefined lag structure, which is 0.2 at lag 0, 0.5 at lag 1, 0.2 at lag 

2, and 0.1 at lag 3, but they are close to the setting. Although the model in the second 

column (n = 4 and d = 3) has the highest adjusted R2 value, the last model (n = 5 and d = 

3) presents a better fit to the actual lag structures if nonsignificant coefficients are 

excluded. 

 

Table 34: Results of polynomial distributed lag regression models applied to data set 4 
(continuous lags) 

Variables / 
Statistics 

Polynomial Distributed Lag Model Specification (Lag Period = n, 
Polynomial Degree = d) 

n = 4, d = 2 n = 4, d = 3 n = 5, d = 2 n = 5, d = 3 

Lag 0 
0.20 

(0.01) 
0.17 

(0.00) 
0.25 

(0.00) 
0.16 

(0.01) 

Lag 1 
0.32 

(0.00) 
0.45 

(0.00) 
0.27 

(0.00) 
0.41 

(0.00) 

Lag 2 
0.31 

(0.00) 
0.31 

(0.00) 
0.25 

(0.00) 
0.33 

(0.00) 

Lag 3 
0.18 

(0.00) 
0.05 

(0.28) 
0.18 

(0.00) 
0.10 

(0.02) 

Lag 4 
-0.07 
(0.34) 

-0.03 
(0.50) 

0.06 
(0.25) 

-0.08 
(0.11) 

Lag 5 - - 
-0.10 
(0.28) 

-0.01 
(0.93) 

Probability > F 0.00 0.00 0.01 0.00 

Adjusted R2 0.80 0.91 0.78 0.88 

 



www.manaraa.com

 

168 
 

The difference between the predefined time-lag structure (the result of the nonstructured 

regression model) and the result of the PDL regression model using Data Set 3 is 

illustrated in Figure 30. 

 

 

Figure 30: Lag coefficients by polynomial distributed lag regression model with Data Set 3 
(continuous lags) 

 

2) Discontinuous time-lag effect 

The coefficients resulting from the PDL regression model using the discontinuous time-

lag case in Data Set 4 are summarized in Table 35. All of the models have the highest 

coefficient value at lag 5, which is consistent with the predefined lag structure. However, 

their coefficient values at t (lag 0) are negative, and their overall structure is different 

from the predefined lag structure. 
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Table 35: Results of polynomial distributed lag regression models applied to data set 4 
(discontinuous lags) 

Variables / 
Statistics 

Polynomial Distributed Lag Model Specification (Lag Period = n, 
Polynomial Degree = d) 

n = 4, d = 2 n = 4, d = 3 n = 5, d = 2 n = 5, d = 3 

Lag 0 
-0.08 
(0.51) 

-0.06 
(0.63) 

-0.09 
-0.06 
(0.69) 

Lag 1 
0.14 

(0.05) 
0.07 

(0.53) 
0.15 

0.11 
(0.34) 

Lag 2 
0.27 

(0.00) 
0.27 

(0.00) 
0.28 

0.25 
(0.01) 

Lag 3 
0.31 

(0.00) 
0.37 

(0.00) 
0.30 

0.33 
(0.00) 

Lag 4 
0.26 

(0.04) 
0.24 

(0.06) 
0.23 

0.27 
(0.02) 

Lag 5 - - 0.05 
0.02 

(0.89) 

Probability > F 0.01 0.03 0.03 0.07 

Adjusted R2 0.57 0.54 0.66 0.49 

 

The best-fitting PDL regression model (n = 5 and d = 2) is compared to the actual time-

lag effect (Figure 31). The PDL regression model estimates coefficients using a concave 

curve and doesn’t identify the discontinuous period, lag 2. 
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Figure 31: Lag coefficients by polynomial distributed lag regression model with Data Set 4 
(discontinuous lags) 

 

 Summary 4.5.

Licensing data is different from data in other areas, such as economics or biology, where 

long-term and continuous time-lag effects are assumed. Therefore, the well-known 

econometrics time-series procedures are not well suited to licensing data. The present 

study suggests a process to identify time-lag effects in licensing data. 

 

This study compared the current approach to estimating time-period and time-lag 

coefficients with the new procedure, using an unstructured regression model (OLS) on 

simulated data sets that reflect time-lag behavior in licensing. The results show that the 

time-lag coefficients of actual lag effects result in positive correlations and present the 
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correct continuous or discontinuous periods, whereas AIC and BIC always pick the 

maximum lag length in the simulated data sets.  

 

The OLS estimates exactly the same coefficients as those that are predefined, whereas the 

PDL regression model produces approximations. In the case of a discontinuous lag 

structure, the PDL method cannot identify the discontinuing effect of the licensing due to 

its inherent polynomial structure. The PDL method would be effective when a relatively 

long-lasting time-lag effect, without discontinuousness, is assumed. 

 

The simulated test of four time-lag cases supports and validates the suggested time-lag 

identifying process. The process is robust and successfully detects the correct time-lag 

coefficients in the unique licensing data. 
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5 Chapter 5. Time Lags in U.S. Academic Research Institution Licensing Activities 

 

 

 Forty-Six U.S. Academic Research Institutions and Their Licensing Data 5.1.

The time-lag analysis employed data from the Association of University Technology 

Managers licensing survey of U.S. academic research institutions from 1991 to 2007. 

Raw data on about 198 institutions was reviewed and refined before being used for the 

analysis, for several reasons. First, although AUTM licensing surveys employed certain 

common questionnaires during the period, they also had new questionnaires on specific 

topics only for certain periods. Another difficulty in using the raw data was due to 

inconsistency in the names of the variables. In some cases, there also were data missing 

for certain years, and institutions are excluded from the present study if they didn’t have a 

complete data set for the variables used in the examination of time-lag effect. Only 48 

U.S. institutions were identified as having full data for the period under examination. 

 

The seven variables used in the analysis include research expenditure, number of 

disclosures, number of U.S. patent applications, number of U.S. patents issued, number 

of licenses and options executed, number of start-ups, and licensing income. Research 

expenditure and licensing income were inflation-adjusted using the 1990 consumer price 

index. 
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Among the 48 institutions, two outliers were identified. First, Emory University had an 

extraordinarily high licensing income of $585.7 million in 2005. The university licensed 

its discovery of the HIV/AIDS drug Emtriva to Gilead Sciences and Royalty Pharma and 

received from the licensees a lump sum payment of $525 million in 2005. The University 

of California system also had peculiar incomes, in 2000 and 2006. Given the average 

licensing income during the period, these data could distort the normal time-lag effect of 

the licensing and cause a biased result. Therefore, these two universities were defined as 

outliers and were excluded from the time-lag analysis. The remaining 46 institutions used 

in the analysis are listed in Table 36. 
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Table 36: The 46 institutions used for the time-lag analysis 

Ranking 
(Income, 

2007) 
University 

Ranking 
(Income, 

2007) 
University 

1 City of Hope National Medic 24 Univ. of Oregon 
2 Northwestern Univ. 25 Indiana Univ. (ARTI) 
3 Wake Forest Univ. 26 Ohio Univ. 
4 Univ. of Minnesota 27 Fred Hutchinson Cancer Res. 
5 Massachusetts Inst. of Tech 28 Clemson Univ. 
6 Mayo Foundation 29 Univ. of Southern California 
7 Univ. of Utah 30 Dartmouth College 
8 Univ. of Iowa Research Fdn. 31 St. Jude Children's Res. 
9 Univ. of Michigan 32 Brigham Young Univ. 

10 Harvard Univ. 33 Colorado State Univ. 
11 Washington Univ. 34 Oregon State Univ. 
12 Case Western Reserve Univ. 35 Georgia Inst. of Technology 
13 Baylor College of Medicine 36 Penn State Univ. 
14 Johns Hopkins Univ. 37 Florida State Univ. 
15 California Institute of Tech. 38 Ohio State Univ. 
16 Vanderbilt Univ. 39 Univ. of Arizona 

17 
Brigham & Women's Hospital, 
Inc. 

40 Univ. of Maryland, College 

18 Rutgers, The State Univ. 41 Univ. of Connecticut 
19 Univ. of Texas Southwestern 42 Univ. of Cincinnati 
20 Tulane Univ. 43 Univ. of Delaware 
21 Univ. of Akron 44 New Jersey Institute of Tech. 
22 Michigan State Univ. 45 National Jewish Center 
23 Univ. of Virginia Patent Fdn. 46 Univ. of Dayton 

 
 

Data on the 46 institutions is summarized in Table 37. The average research expenditure 

of the institutions from 1991 to 2007 was $170 million, and licensing income was $4.6 

million. The variances among the institutions in expenditure and number of disclosures 

are two times higher than the variances in time, whereas institutional variances in the 

number of start-ups and licensing income are similar to the variances in time. The 

number of patent applications, patents issued, and licenses and options executed have 

little variance, other than time. 
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Table 37: Summary of the seven variables of the 46 institutions 

Variable Mean 
Standard 
Deviation 

Minimum Maximum 
Observatio

ns 
EXP 
($10 

million 
in 1990 
dollars) 

Overall 16.91 15.81 0.72 113.93 N = 782 

Between   14.96 1.36 84.52 n = 46 

Within   5.54 -11.04 46.32 T = 17 

DIS 

Overall 94.52 96.02 0.00 661.00 N = 782 

Between   85.76 13.24 390.12 n = 46 

Within   44.90 -150.77 367.23 T = 17 

PTF 

Overall 46.12 66.46 0.00 562.00 N = 782 

Between   49.50 6.76 209.76 n = 46 

Within   44.91 -133.64 398.36 T = 17 

PTI 

Overall 20.19 26.67 0.00 172.00 N = 782 

Between   21.62 3.76 116.35 n = 46 

Within   15.91 -96.16 108.01 T = 17 

LOE 

Overall 25.86 26.02 0.00 163.00 N = 782 

Between   21.74 2.18 95.35 n = 46 

Within   14.63 -20.14 121.33 T = 17 

STU 

Overall 2.93 5.35 0.00 64.00 N = 782 

Between   3.34 0.00 20.18 n = 46 

Within   4.20 -17.24 51.81 T = 17 

LCI 
($0.1 

million 
in 1990 
dollars) 

Overall 46.23 85.91 0.00 743.81 N = 782 

Between   61.07 0.59 313.48 n = 46 

Within   61.05 -125.82 532.36 T = 17 

 
Note: Between = institution variance, ��� ; Within = time variance, ���− ��� + � .̿ DIS = number of 

disclosures, EXP = research expenditure, LCI = licensing income, LOE = number of licenses and options 

executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents issued, STU = number 

of start-ups. 
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 Time-Lag Coefficients (Steps 2-1 to 2-5) 5.2.

 Step 2-1: Stabilize the Time-Series Panel Data  5.2.1.

A unit root test of the licensing data was conducted using the LLC test, which is a 

stationary test method for time series panel data. The study used the “xtunitrrot” function 

of the Stata package for the test. The two raw data sets, Diff(0) =  ���������, and first-

order difference, Diff(1) = ��������� − �����������, were tested. The result shows that 

all variables except for the patents issued and license and options executed have a unit 

root and are not stationary (Table 38). If the first-order difference (delta) is taken for the 

variables, they become stationary. Therefore, the delta data for each variable is used for 

the time-lag analysis. 

 

Table 38: Results of the unit root test of licensing data, using the Levin-Lin-Chu test 

Variable 
P-Value From Levin-Lin-Chu Test 

Raw data,  
Diff (0) 

First-order difference, 
Diff (1) 

Expenditure 0.27 
(Not stationary) 

0.00 
(Stationary) 

Disclosure 0.99 
(Not stationary) 

0.00 
(Stationary) 

Patent Filed 0.25 
(Not stationary) 

0.00 
(Stationary) 

Patent Issued 0.00 
(Stationary) 

0.00 
(Stationary) 

License and Option 
Executed 

0.00 
(Stationary) 

0.00 
(Stationary) 

Start-up 0.99 
(Not stationary) 

0.00 
(Stationary) 

Licensing Income 1.00 
(Not stationary) 

0.00 
(Stationary) 
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 Step 2-2: Construct a Model 5.2.2.

The time flow of each licensing activity is assumed based on the licensing process, which 

is identified through the literature (Figure 32). For each activity it is assumed that a 

licensing activity results or influences the other activities on its right, and that there is no 

reverse effect. For example, the number of disclosures cannot be a result of patents issued 

or licensing income. 

 

 

Figure 32: Licensing process 

 
The time-lag effect is defined as the influence of a prior licensing activity on other, 

posterior activities. Therefore, the time-lag effects of each pair of licensing variables 

were explored. 

 

The time-lag distributed lag model, using an unstructured lag coefficient, is defined as 

follows: 
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��,�= ����,�+ 	����,���+ ����,���+ ⋯+ � ���,���+ ��,�      ....................................  (55) 

where, 

� = output licensing variables (delta) of disclosure, patent applications, patent issued, 

licenses and options executed, start-up, and licensing income; 

�  = input licensing variables (delta) of research expenditure, disclosure, patent 

applications, patents issued, licenses and options executed, and start-up; 

i = ith institution; � = 1, 2,… 46; 

� = year t; 

��,��,…,��  = time-lag coefficients; and 

��,� = error term. 

 

 Step 2-3: Identify Potential Lag Period 5.2.3.

Correlations among each pair of input and output licensing variables, with maximum lag 

periods of 8, are summarized at Table 39. The time lags that have a negative correlation 

to a dependent variable are excluded. For example, the identified potential time lags from 

research expenditure to disclosure are 0, 1, 3, 5, and 7 years. 
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Table 39: Correlation result of the licensing variables 

Variables Time lags of independent variables Selected 
Potential 

Lags 
Depen
dent 

Indepe
ndent 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 

DIS EXP 0.145 0.105 -0.056 0.050 -0.001 0.090 -0.073 0.098 -0.025 0, 1, 3, 5, 7 

PTF EXP 0.116 -0.098 -0.008 -0.053 0.147 0.120 0.034 -0.044 0.062 0, 4, 5, 6, 8 

PTI EXP 0.094 0.112 -0.073 -0.013 -0.099 0.176 -0.281 0.076 -0.038 0,1, 5, 7 

LOE 
EXP 

0.024 -0.011 -0.048 -0.084 0.005 0.036 0.009 -0.072 0.145 0, 4, 5, 6, 8 

STU EXP 0.044 -0.150 0.097 -0.021 0.150 -0.009 -0.088 -0.144 0.110 0, 2, 4, 8 

LCI EXP -0.001 -0.108 0.044 0.060 0.014 0.203 -0.221 0.015 0.025 2, 3, 4, 5, 7, 8 

PTF DIS 0.272 0.054 0.051 0.066 0.241 -0.144 -0.095 0.006 -0.050 0, 1, 2, 3, 4, 7 

PTI DIS 0.065 -0.069 0.066 0.043 -0.114 0.100 -0.208 -0.001 0.015 0, 2, 3, 5, 8 

LOE DIS -0.012 0.059 -0.047 0.017 0.000 -0.027 -0.008 -0.029 -0.029 1, 3 

STU DIS 0.047 -0.054 0.012 -0.061 0.132 -0.097 -0.067 0.003 0.110 0, 2, 4, 7, 8 

LCI DIS 0.023 -0.074 0.031 -0.056 0.001 0.104 -0.118 0.023 0.056 0, 2, 4, 5, 7, 8 

PTI PTF -0.004 0.036 -0.070 0.147 -0.119 0.032 -0.030 -0.051 -0.077 1, 3, 5 

LOE PTF 0.056 -0.012 0.077 -0.004 -0.032 -0.020 -0.033 -0.018 -0.071 0, 2 

STU PTF 0.204 -0.161 -0.065 0.092 0.049 -0.097 -0.082 0.063 0.044 0, 3, 4, 7, 8 

LCI PTF -0.016 -0.069 -0.052 0.119 0.042 -0.048 -0.031 0.018 -0.018 3, 4, 7 

LOE PTI 0.093 -0.004 -0.096 0.057 0.012 0.064 -0.090 0.082 -0.050 0, 3, 4, 5, 7 

STU PTI -0.049 0.163 -0.135 0.075 -0.037 -0.046 0.000 0.233 -0.082 1, 3, 7 

LCI PTI 0.149 -0.031 0.017 -0.046 0.014 -0.036 0.066 0.024 0.112 0, 2, 4, 6, 7, 8 

STU LOE 0.217 -0.061 -0.078 0.069 0.029 -0.010 -0.024 -0.008 -0.032 0, 3, 4 

LCI LOE 0.066 -0.038 -0.056 0.085 -0.031 -0.007 -0.023 0.046 -0.063 0, 3, 7 

LCI STU 0.141 0.051 -0.054 -0.005 0.025 -0.121 -0.085 0.043 0.176 0, 1, 4, 7, 8 

 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 
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 Step 2-4: Determine the Lag Period 5.2.4.

The total 21 distributed lag models, using the selected potential lags of each model, were 

tested to identify significant lag periods. For example, the distributed lag regression 

model of disclosure and expenditure with 0, 1, 3, 5, and 7 lags is calculated as 

 

∆��,�
��� = ��∆��,�

��� + ��∆��,���
��� + ��∆��,���

��� + ��∆��,���
��� + ��∆��,���

��� + ��      ............  (56) 

 

The regression result obtained using the Stata package is presented in Table 40. The lag 

periods 0, 1, and 5 are significant (p-value < 0.1). Therefore, these three lag periods are 

defined as time lags between disclosure and expenditure. 

 

Table 40: regression result of disclosure and expenditure with potential lag periods 

 

 

The significant time-lag periods from the 21 regression models are summarized in Table 

41. As shown in the first column, the significant time lags from expenditure to disclosure 

are 0, 1, and 5 years; to patent filed, they are 0, 4 and 5 years; to patent issue, they are 1 

                                                                              
         L7.     .9550496   .6247714     1.53   0.127    -.2731142    2.183213
         L5.     1.394634   .5765469     2.42   0.016     .2612686    2.527998
         L3.     .4915564   .5785939     0.85   0.396    -.6458325    1.628945
         L1.     2.109773   .6970823     3.03   0.003     .7394619    3.480084
         --.     1.642528   .5004857     3.28   0.001     .6586823    2.626373
   Delta_EXP  
                                                                              
   Delta_DIS        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total        416513   414  1006.07005           Root MSE      =   30.44
                                                       Adj R-squared =  0.0790
    Residual    378967.279   409  926.570365           R-squared     =  0.0901
       Model    37545.7207     5  7509.14415           Prob > F      =  0.0000
                                                       F(  5,   409) =    8.10
      Source         SS       df       MS              Number of obs =     414
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and 5 years; to licenses and options executed, it is 8 years; to start-up, they are 4 and 8 

years; to licensing income, it is 5 years. However, caution is required in interpreting the 

results. For example, time lags of 0, 1, and 5 years from expenditure to disclosure don’t 

necessarily mean it would not be possible for an institution to have disclosure after 2 or 3 

years following their research, which is other than the identified lag periods. Instead, the 

lag periods shown in the table represent the most plausible time period reflecting the data. 

 

Table 41: Significant lag periods among the licensing variables 

Dependent 
Variables 

Significant Lag Periods of the Independent Variables 

Expenditure Disclosure Patent filed 
Patent 
Issued 

Licenses and 
Options 

Executed 
Start-up 

Disclosures Lag0
**

, 1
**

, 5
*

 N/A N/A N/A N/A N/A 

Patent Filed 
Lag0

**

, 4
**

, 

5
**

 

Lag0
**

,1
*

, 2
*

, 

3
*

, 4
**

 
N/A N/A N/A N/A 

Patents 
Issued Lag1

*

, 5
**

 Lag5
*

  Lag1
*

, 3
**

 N/A N/A N/A 

Licenses 
and Options 

Executed 
Lag8

**

 Lag1
**

 Lag0
**

, 2
**

 Lag0
**

, 7
*

 N/A N/A 

Start-up Lag4
**

, 8
*

 Lag4
**

, 8
**

 Lag0
**

 Lag1
**

, 7
**

 Lag0
**

 N/A 

Licensing 
Income Lag5

**

 Lag5
**

 Lag3
**

 Lag6
*

, 8
**

 Lag3
*

 
Lag0

**

, 7
**

, 

8
**

 

 
Note: *p-value < 0.1, **p-value < 0.05 

 

In order to define unobserved time lags, a known lag function or curve should be defined. 

There is no current study defining the curves or lag behavior of continuous lag effects 

representing real licensing cases. Therefore, the present study doesn’t define or estimate 
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time lags if they are not significant in the models, and it assumes discontinuous lag 

effects. 

 Step 2-5: Estimate Time-Lag Coefficients 5.2.5.

The time-lag effects of the identified lag periods among the licensing variables were 

explored. The 21 regression models were specified by including the significant lags only. 

For instance, the lag coefficients of expenditure to disclosure are estimated using the 

model with lag 0, 1, and 5. 

 

∆��,�
��� = ��∆��,�

��� + ��∆��,���
��� + ��∆��,���

��� + ��      ..................................................  (57) 

 

The result of the model is presented in Table 42. All of the coefficients are significant 

and have a value of 1.78 for lag 0, 1.67 for lag 1, and 1.49 for lag 5. If these coefficient 

values are normalized, the percentage of expenditure at a certain year relative to the 

disclosure at year t can be found. In this case, the 36% of expenditure at year t, 34% at t – 

1, and 30% at t - 5 are associated with the number of disclosures at t. 

 

Table 42: Time-lag coefficients of expenditure to disclosure 

                                                                               
         L5.     1.490026    .515771     2.89   0.004     .4766956    2.503357
         L1.     1.665441    .513275     3.24   0.001     .6570136    2.673868
         --.     1.782722   .4412415     4.04   0.000     .9158181    2.649625
   Delta_EXP  
                                                                              
   Delta_DIS        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total        444626   506   878.70751           Root MSE      =   28.64
                                                       Adj R-squared =  0.0665
    Residual    412597.135   503  820.272635           R-squared     =  0.0720
       Model    32028.8648     3  10676.2883           Prob > F      =  0.0000
                                                       F(  3,   503) =   13.02
      Source         SS       df       MS              Number of obs =     506
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The unstandardized lag coefficients of 21 regression models are presented in Table 43. 

 

Table 43: Unstandardized time-lag coefficients of the licensing variables 

Variables Time-lag Coefficients of Independent Variables 

Depen
dent 

Indepe
ndent 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 

DIS EXP 1.783 1.665       1.490       

PTF EXP 1.320       2.101 1.987       

PTI EXP   0.438       0.524       

LOE EXP                 0.899 

STU EXP         0.143       0.112 

LCI EXP           4.252       

PTF DIS 0.246 0.162 0.139 0.095 0.213         

PTI DIS           0.044       

LOE DIS   0.043               

STU DIS         0.014       0.016 

LCI DIS           0.260       

PTI PTF   0.031   0.059           

LOE PTF 0.047   0.047             

STU PTF 0.021                 

LCI PTF       0.281           

LOE PTI 0.140             0.137   

STU PTI   0.026           0.051   

LCI PTI             0.546   0.790 

STU LOE 0.003                 

LCI LOE       0.320           

LCI STU 3.095             0.922 1.732 
 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 

Finally, the time-lag effects of the licensing variables are defined by normalizing the lag 

coefficients, as shown in Table 44. 
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Table 44: Standardized time-lag effects of the licensing variables 

Variables Time-Lag Coefficients of Independent Variables 

Depen
dent 

Indepe
ndent 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 

DIS EXP 0.361 0.337       0.302       

PTF EXP 0.244       0.388 0.367       

PTI EXP   0.455       0.545       

LOE EXP                 1.000 

STU EXP         0.560       0.440 

LCI EXP           1.000       

PTF DIS 0.287 0.190 0.163 0.111 0.249         

PTI DIS           1.000       

LOE DIS   1.000               

STU DIS         0.463       0.537 

LCI DIS           1.000       

PTI PTF   0.343   0.657           

LOE PTF 0.498   0.502             

STU PTF 1.000                 

LCI PTF       1.000           

LOE PTI 0.506             0.494   

STU PTI   0.342           0.658   

LCI PTI             0.409   0.591 

STU LOE 1.000                 

LCI LOE       1.000           

LCI STU 0.538             0.160 0.301 
 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 

 Aggregated Time-Lag Effects from Licensing Activities to Licensing Income 5.3.

The aggregated total time-lag effect from each licensing variable to licensing income is 

developed by incorporating the identified time-lag coefficients between each pair of 

licensing variables. 
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 The Paths to Licensing Income 5.3.1.

A total of 32 paths are involved in the licensing process, as illustrated in Figure 33. The 

paths from expenditure on the first node to licensing incomes are associated with all paths 

from 1 to 32. The paths of all other licensing variables begin from the second node. The 

paths from disclosure, which is located at the second node after expenditure, to licensing 

income are defined from paths 1 to 16; the patent application paths are defined from 

paths 17 to 24; the patent issue paths are defined from paths 25 to 28; the license and 

option paths are defined from paths 29 to 30; and finally, the start-up path to licensing 

income is associated with path 31. See Appendix B. for individual groups of paths for 

each licensing variable. 
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Figure 33: All identified paths from licensing variables to licensing income 
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 The Time-Lag Functions and Aggregated Total Time-Lag Effects 5.3.2.

The aggregated total time-lag effects of the six variables incorporating the paths 

identified (research expenditure, number of disclosures, number of U.S. patent 

applications, number of U.S. patents issued, number of licenses and options executed, 

and number of start-ups) are defined by the time-lag functions of each pair of variables 

and their transformation, as defined in Chapter 3. 

 

For illustration, an example of the time-lag functions and transformation of the patents 

issued variable is provided. The paths from patents issued to licensing income are 

presented in Figure 34. 

 

 

Figure 34: Paths from patent issued to licensing income 

 

First, the time-lag functions among the variables from Figure 34 are defined with the lag 

coefficients. For instance, the time-lag function from patents issued to licenses and 

options executed, ����,��� , is defined as lag 0 and lag 7 of patents issued, with the 

coefficients of the lags, 0.51 and 0.49, and is expressed as ����,��� = 0.51������ +

0.49������. The functions of each path are defined in this way (Table 45). 
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Table 45: Time-lag functions of patents issued on the patents issued paths 

Path Time Lag Time-Lag Functions Using the Lag Coefficients 

PTI Path 1 
(6rd degree) 

PTI to LOE ����,��� = 0.51������ + 0.49������  

LOE to STU ����, ��� = ����  

STU to LCI ����, ��� = 0.54���� + 0.16������ + 0.30������  

PTI Path 2 
(2nd degree) 

PTI to LOE ����,��� = 0.51������ + 0.49������  

LOE to LCI ����, ��� = ������  

PTI Path 3 
(2nd degree) 

PTI to STU ����,��� = 0.34������ + 0.66������  

STU to LCI ����, ��� = 0.54���� + 0.16������ + 0.30������  

PTI Direct 
Path 

PTI to LCI ����, ��� = 0.41������ + 0.59������  

 
Note: LCI = licensing income, LOE = number of licenses and options executed, PTI = number of U.S. 

patents issued, STU = number of start-ups. 

 

The next step is to combine all the functions on each path, using the transform function, 

⨂ . The time-lag effect of patent issue, ����,��� , on the first path is defined as two 

transformations of the three time-lag functions, as follows: 

 

����,��� = (����,���⨂ ����, ���) ⨂ ����, ��� = ����,��� ⨂ ����, ���     ........................  (58) 

����,��� = ����,���⨂ ����, ��� = �����,����
�

=      ....................................................  (59) 

(0.51��� ��� + 0.49��� ��� )��� =   

0.51��� ����� + 0.49��� ����� = 0.51��� � + 0.49��� ���   
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����, ���
��� ���� � = ����,��� ⨂ ����, ��� =      ...........................................................  (60) 

0.54 �����,����
�

+ 0.16 �����,����
���

+ 0.30 �����,����
���

=  

0.54 (0.51���� + 0.49������)� + 0.16 (0.51���� + 0.49������)��� +

0.30 (0.51���� + 0.49������)��� =  

0.54 ∗ 0.51������ + 0.54 ∗ 0.49�������� + 0.16 ∗ 0.51�����(��) + 0.16 ∗

0.49�������(��) + 0.30 ∗ 0.51�����(��) + 0.30 ∗ 0.49�������(��) =   

0.27���� + 0.35������ + 0.15������ + 0.08������� + 0.15�������   

 

In the same way, ����, ���
��� ���� �  and ����, ���

��� ���� �  are transformed, whereas 

����, ���
��� ������ ����  is defined by lag coefficients without transformation. Table 46 

summarizes the aggregated time-lag effects of patent issue. 
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Table 46: Time-lag aggregator of patent issue 

Paths 
Transformed 
Direct Paths 

Transformed Direct Time-Lag Functions 

PTI Path 1 
(3rd degree) 

PTI to LCI 

(����, ���
��� ���� �) 

����,��� = (����,���⨂����, ���)⨂����, ��� =

����,���⨂����, ���   

����,���⨂�����, ��� = 0.51���� + 0.49������  

����, ���
��� ���� � = ����,���⨂����, ��� =  

�. ������ + �. �������� + �. �������� +
�. ��������� + �. ���������  

PTI Path 2 
(2nd 

degree) 

PTI to LCI 

(����, ���
��� ���� �) 

����, ���
��� ���� � = ����,���⨂����, ��� =

�. �������� + �. ���������  

PTI Path 3 
(2nd 

degree) 

PTI to LCI 

(����, ���
��� ���� �) 

����, ���
��� ���� � = ����,���⨂����, ��� =

�. �������� + �. �������� + �. �������� +
�. �������� + �. ��������� + �. ���������  

PTI Direct 
Path 

PTI to LCI 

(����, ���
������ ����) 

����, ��� = �. ��������+ �. ��������  

 
Note: LCI = licensing income, PTI = number of U.S. patents issued. 

 

The multiple time-lag effects under each path are then summed. The aggregated and 

normalized total time-lag effects of patent issue are summarized in Table 47. 

 



www.manaraa.com

 

191 
 

Table 47: Integration of multiple time-lag aggregators of patents issued on the different 
paths 

Step Result 

Sum all direct and 
transformed direct time-lag 

functions 

����, ���
��� ���� � + ����, ���

��� ���� �+ 

����, ���
��� ���� � +����, ���

������ ����  

= 0.27���� + 0.35������ + 0.15������ + 0.08������� +
0.15������� 
+0.51������ + 0.49�������  
+0.18������ + 0.35������ + 0.05������ + 0.10������ +
0.11������� + 0.20�������  
+0.41������ + 0.59������  

Total Time-Lag Aggregator 
of PTI to LCI 
(Standardized) 

�����,��� = 0.07���� + 0.05������ + 0.13������ +
0.10������ + 0.18������ + 0.20������ + 0.03������ +
0.12������� + 0.05������� + 0.09�������  

 
Note: LCI = licensing income, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued. 

 

The aggregated and normalized total time-lag effects of the other five variables are 

calculated and summarized in Table 48. 
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Table 48: Aggregated total time-lag effects of the six licensing variables 

Variable Item Aggregated Total Time-Lag Effect 

EXP 

Summed Effect 

0.28���� + 0.48������ + 0.50������ + 0.73������ + 1.83������ +
2.97������ + 1.42������ + 1.61������ + 3.21������ + 2.17������ +
1.54������� + 2.76������� + 2.04������� + 2.34������� +
1.36������� + 1.71������� + 1.60������� + 0.73������� +
0.64������� + 0.39������� + 0.76������� + 0.33������� +
0.22������� + 0.14������� + 0.08������� + 0.13������� +
0.02������� + 0.02�������  

Total Time-Lag 
Effect 

(�����,���) 

0.01���� + 0.02������ + 0.02������ + 0.02������ + 0.06������ +
0.09������ + 0.04������ + 0.05������ + 0.10������ + 0.07������ +
0.05������� + 0.09������� + 0.06������� + 0.07������� +
0.04������� + 0.05������� + 0.05������� + 0.02������� +
0.02������� + 0.01������� + 0.02������� + 0.01������� +
0.01������� + 0.004������� + 0.003������� + 0.004������� +
0.001������� + 0.001�������  

DIS 

Summed Effect 

0.23���� + 0.72������ + 0.24������ + 0.65������ + 1.92������ +
1.81������ + 0.69������ + 0.70������ + 1.41������ + 0.84������ +
0.54������� + 1.08������� + 1.34������� + 1.24������� +
0.41������� + 0.83������� + 0.26������� + 0.15������� +
0.11������� + 0.28������� + 0.43������� + 0.06������� + 0.06�������  

Total Time-Lag 
Effect (�����,���) 

0.01���� + 0.04������ + 0.02������ + 0.04������ + 0.12������ +
0.11������ + 0.04������ + 0.04������ + 0.09������ + 0.05������ +
0.03������� + 0.07������� + 0.08������� + 0.08������� +
0.03������� + 0.05������� + 0.02������� + 0.01������� +
0.01������� + 0.02������� + 0.03������� + 0.003������� +
0.004�������  

PTF 

Summed Effect 

0.81���� + 0.09������ + 0.33������ + 1.68������ + 0.29������ +

0.50������ + 0.33������ + 0.38������ + 0.69������ + 0.62������ +

0.65������� + 0.69������� + 0.07������� + 0.32������� +

0.06������� + 0.12������� + 0.12������� + 0.23������� 

Total Time-Lag 
Effect (�����,���) 

 0.10���� + 0.01������ + 0.04������ + 0.21������ + 0.04������ +

0.06������ + 0.04������ + 0.05������ + 0.09������ + 0.08������ +

0.08������� + 0.09������� + 0.01������� + 0.04������� +

0.01������� + 0.01������� + 0.02������� + 0.03������� 

PTI 
Summed Effect 

0.27���� + 0.18������ + 0.51������ + 0.41������ + 0.70������ +

0.80������ + 0.10������ + 0.49������� + 0.18������� + 0.35�������  

Total Time-Lag 
Effect (�����,���) 

0.07���� + 0.05������ + 0.13������ + 0.10������ + 0.18������ +

0.20������ + 0.03������ + 0.12������� + 0.05������� + 0.09�������  

LOE 
Summed Effect 0.54���� + 1.00������ + 0.16������ + 0.30������  

Total Time-Lag 
Effect (�����,���) 

0.27���� + 0.50������ + 0.08������ + 0.15������  

STU 
Summed Effect 0.54���� + 0.16������ +0.30������ 

Total Time-Lag 
Effect (�����,���) 

0.54���� + 0.16������ +0.30������ 

 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 
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 Summary 5.4.

The time-lag identifying process, using a distributed lag model with an unstructured 

coefficient structure, was applied to the data from 46 U.S. academic research institutions. 

A total of 21 regression models were applied to each step, and they successfully 

identified the time-lag effect between each pair of the seven licensing variables, including 

research expenditure, disclosure, patent application, patents issued, licenses and options 

executed, start-up, and licensing income. The AUTM licensing survey data of the 46 

institutions from 1991 to 2007 was used for the analysis. 

 

The standardized time-lag coefficients, along with the licensing process, are illustrated in 

Figure 35. The shortest time lag in the licensing process, if the durations are added up, is 

2 years, and the longest one is 27 years. The time-lag model between disclosure and 

patent filed has the greatest explanatory power (R2 = 0.1) among the 21 regression 

models, though all of the models have very low R2 values. However, because the purpose 

of the regression models is to identify significant time-lag coefficients rather than to 

explain a dependent variable by independent variables, the R2 values of the regression 

models are not seriously considered. 
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Figure 35: Licensing process with the time-lag coefficients 
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The minimum duration from expenditures to licensing is 2 years and the maximum is 27 

years. The time lags for which R2 values are higher than others are 

 from research expenditure to disclosure, patent application, start-up, and licensing 

income; 

 from disclosure to patent application and start-up; 

 from patent issued to start-up; and 

 from start-up to licensing income. 

 

Although the model identified the continuous time-lag effect of 4 years from disclosure 

to patent filed, it detected discontinuous lag periods ranging from 1 year to 3 years. This 

reflects the institutions’ licensing practices. After inventions are disclosed through the 

licensing offices, most of them are filed, thus producing significant distribution across the 

periods up to 4 years. On the other hand, the lag relationships between a posterior (output) 

and prior (input) licensing variable depend on the quality and attractiveness of the prior 

variable in licensing. Therefore, more uncertainty and greater variations of time-lag 

effects exist in those variables. 

 
The distributions of the total time-lag effects are illustrated in Figure 36. The time-lag 

effect distributions of expenditure and disclosure show relatively smooth shapes. Over all, 

the time-lag effects have a higher effect as they get closer to the current year, t - 0. 

Unique peak effect values at certain lag periods are observed: t - 8 for expenditure, t - 4 

for disclosure, t - 3 for patent application, t - 8 for patent issue, t - 3 for licenses and 

options executed, and t - 0 for start-up. 
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 (a) Expenditure (EXP)                                                  (b) Disclosure (DIS) 

    
(C) Patent Filed (PTF)                                                   (d) Patent Issued (PTI) 

    
       (e) License & Option Executed (LOE)                          (f) Start-up (STU) 

----- Polynomial trend line of the effect values 

Figure 36: Graph of the aggregated total time-lag effects to licensing income of six licensing 
variables 

 

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

t-
3

0

t-
2

8

t-
2

6

t-
2

4

t-
2

2

t-
2

0

t-
1

8

t-
1

6

t-
1

4

t-
1

2

t-
1

0

t-
8

t-
6

t-
4

t-
2 t

Ti
m

e
-L

ag
 F

ac
to

r 
V

al
u

e

Time Lag

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

t-
3

0

t-
2

8

t-
2

6

t-
2

4

t-
2

2

t-
2

0

t-
1

8

t-
1

6

t-
1

4

t-
1

2

t-
1

0

t-
8

t-
6

t-
4

t-
2 t

Ti
m

e
-L

ag
 F

ac
to

r 
V

al
u

e

Time Lag

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

t-
3

0

t-
2

8

t-
2

6

t-
2

4

t-
2

2

t-
2

0

t-
1

8

t-
1

6

t-
1

4

t-
1

2

t-
1

0

t-
8

t-
6

t-
4

t-
2 t

Ti
m

e
-L

ag
 F

ac
to

r 
V

al
u

e

Time Lag

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

t-
3

0

t-
2

8

t-
2

6

t-
2

4

t-
2

2

t-
2

0

t-
1

8

t-
1

6

t-
1

4

t-
1

2

t-
1

0

t-
8

t-
6

t-
4

t-
2 t

Ti
m

e
-L

ag
 F

ac
to

r 
V

al
u

e

Time Lag

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

t-
3

0

t-
2

8

t-
2

6

t-
2

4

t-
2

2

t-
2

0

t-
1

8

t-
1

6

t-
1

4

t-
1

2

t-
1

0

t-
8

t-
6

t-
4

t-
2 t

Ti
m

e
-L

ag
 F

ac
to

r 
V

al
u

e

Time Lag

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

t-
3

0

t-
2

8

t-
2

6

t-
2

4

t-
2

2

t-
2

0

t-
1

8

t-
1

6

t-
1

4

t-
1

2

t-
1

0

t-
8

t-
6

t-
4

t-
2 t

Ti
m

e
-L

ag
 F

ac
to

r 
V

al
u

e

Time Lag



www.manaraa.com

 

197 
 

 

6 Chapter 6. Licensing Performance of 46 U.S. Academic Research Institutions 

 

 Input and Output Structure of the Data Envelopment Analysis Model 6.1.

The input and output structure of the DEA model, exploring efficiencies and changes in 

U.S. academic research institutions’ technology commercialization, is presented in Figure 

37. The ARITC process is defined in 3 (see Figure 10). It includes seven variables: 

research expenditure, number of disclosures, number of U.S. patent applications, number 

of U.S. patents issued, number of licenses and option executed, number of start-ups, and 

licensing income. Research expenditure is defined as an input variable for the DEA 

model. The other six variables can be considered a result of research expenditures on the 

path of the licensing process. 

 

However, when the performance of the licensing or commercialization effort is discussed, 

quality of outputs should be considered as well as quantity. In this study, the quality of 

each invention or license is not measured directly. Instead, the study considers 

performance quality by excluding output variables that reflect high variance in quality. 

For this reason, disclosure, patent applications, and licenses and options executed are 

excluded from the DEA model output. They are intermediating variables that generate 

final products, patents issued, start-ups, and licensing income. The quantity of the latter 
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variables depends on the quality of the intermediating variables. The input and output 

variables of the DEA model measuring ARITC performance are presented in Figure 37. 

 

 

Figure 37: Input and output structure in the data envelopment analysis model 

 

 Time-Lag Effect Neutralized Input and Output Data 6.2.

 Approach to Incorporating Time-Lag Effect Into the Data 6.2.1.

This study evaluates the efficiencies of the licensing performance of 46 U.S. academic 

research institutions from 1991 to 2007. The time-lag effects of each variable that leads 

to licensing income are developed in 5. However, the standard time-lag correlation 

coefficients among the input and output variables are used to define time lag–effect 

aggregated data for the DEA analysis. 

 

There are two reasons for using the lag coefficients rather than time-lag effects, including 

all potential paths to licensing. First, the ranges of the identified time-lag effects are 

longer than the time period covered in the AUTM data. The time-lag effect from research 

expenditure to licensing, for example, begins 27 years from the year when licensing 

income occurs. This would require data from 1980 to 2007. Second, the time-lag effects 

Research 
Expenditure 

ARITC Process 
- Disclosure 
- Patent filed 
- License & option 
executed 

Input Output 

Patent Issued 
 
Start-Up 
 
Licensing Income 
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are developed to understand overall time-lag effects from the variables to licensing 

income by cumulating all possible paths through other variables. Although the finding 

provides insight into the total distributed effect of the lags over long periods, it doesn’t 

necessarily mean that the actual cases in the data follow the hypothetical paths used in the 

time-lag effect. Therefore, the time-lag coefficient values derived from the data could 

reflect more practical lag effects, for the purpose of data transformation. 

 

 Data Transformation 6.2.2.

The time-lag coefficients of the input and output variables identified in 5 are presented in 

Table 49. 

 

Table 49: Time-lag coefficients from input to output variables 

Dependent variable 
(PTI, STU, and LCI) 

Independent Variable: Research Expenditure 

Lag to PTI Lag to STU Lag to LCI 

Lag 1 Lag 5 Lag 4 Lag 8 Lag 5 

Coefficient values of the 
lag 

0.455 0.545 0.560 0.440 1 

 
Note: LCI = licensing income, PTI = number of U.S. patents issued, STU = number of start-ups. 

 

The time-lag coefficients in the distributed lag model are defined as the time duration of 

expenditure for each output variable at year t. This relationship is illustrated in Figure 38. 
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Figure 38: Time-lag relationships between input and output variables 

  

The data is transformed in such a way that the input variable is fixed at year t and the 

three output variables are forwarded to the same duration as the variables. For this 

purpose, the time lags defined by lagged years from expenditure to output variables are 

transformed to the future years of output variables, from the expenditure at year t, using 

the following formulations: 

 

PTI to EXP at t =      ..................................................................................................  (61) 

���� =
�

�.���
× ������ +

�

�.���
× ������ =  

2.17������ + 1.85������ ≡ 0.54������ + 0.46������  

 

STU to EXP at t =      .................................................................................................  (62) 

���� =
�

�.���
������ +

�

�.���
������ = 1.79������ + 2.27������     

≡ 0.44������ + 0.56������  

 

LCI to EXP at t =      ..................................................................................................  (63) 

���� =  ������  
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The resulting time lag relationships among the transformed data, using the equations 

above and the data structure for DEA and the Malmquist Index, are presented in  

Figure 39.  

 
Figure 39: Time-lag relationship of transformed data and data envelopment analysis model 
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The amount of expenditure at year t is associated with 54% of patents issued at t + 1 and 

46% at t + 5; with 44% of start-ups at t + 4 and 56% at t + 8; and with 100% of licensing 

income at year t + 5. The maximum time period for each year of input is 8 years. 

Therefore, the total input period used in the DEA model ranges from 1991 to 1999 and 

output variables are from 1992 to 2007. Malmquist Indexes measuring the efficiency 

changes using multiyear DEA scores are defined from 1992 (change from 1991 to 1992) 

to 2000 (change from 1999 to 2000), including output variables from 1992 to 2007. 

 

 Verification of the Data Envelopment Analysis Model and Coding 6.3.

The three super-efficiency models by Cook, et al. [33], Lee, et al. [66], and Lovell and 

Rouse [70] were applied to the transformed licensing data of the 46 institutions in order 

to verify the program coding of Xpress-Mosel and to compare those models. For this 

purpose, expenditure in 1999 and other output variables that incorporate time-lag effect 

from 2000 to 2007 was used. The results are summarized in Table 50. 
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Table 50: Super-efficiency scores of three models 

Institutions 

Output-Oriented 
Super Efficiency 

(1/phi) 
Institutions 

Output-Oriented 
Super Efficiency 

(1/phi) 

Lovell 
and 

Rouse 
(2003) 

Cook, 
et al. 

(2009) 

Lee, et 
al.  

(2011) 

Lovell 
and 

Rouse 
(2003) 

Cook, 
et al.  

(2009) 

Lee, et 
al.  

(2011) 

Baylor College of Medicine 0.23 0.23 0.23 Oregon State Univ. 0.17 0.17 0.17 

Brigham & Women's Hospital, 
Inc. 

0.37 0.37 0.37 Penn State Univ. 0.32 0.32 0.32 

Brigham Young Univ. 1.88 1.88 1.88 Rutgers, The State Univ. 0.29 0.29 0.29 

California Institute of Tech. 3.15 3.15 3.15 St. Jude Children's Researc 0.10 0.10 0.10 

Case Western Reserve Univ. 0.37 0.37 0.37 Tulane Univ. 0.19 0.19 0.19 

City of Hope National Medic 1.68 1.68 1.68 Univ. of Akron 865.18 3.75 3.75 

Clemson Univ. 0.23 0.23 0.23 Univ. of Arizona 0.19 0.19 0.19 

Colorado State Univ. 0.38 0.38 0.38 Univ. of Cincinnati 0.12 0.12 0.12 

Dartmouth College 0.19 0.19 0.19 Univ. of Connecticut 0.27 0.27 0.27 

Florida State Univ. 0.39 0.39 0.39 Univ. of Dayton 0.21 0.21 0.21 

Fred Hutchinson Cancer Res. 0.08 0.08 0.08 Univ. of Delaware 0.27 0.27 0.27 

Georgia Inst. of Technology 0.86 0.86 0.86 Univ. of Iowa Research Fdn. 0.35 0.35 0.35 

Harvard Univ. 0.59 0.59 0.59 Univ. of Maryland, College 0.61 0.61 0.61 

Indiana Univ. (ARTI) 0.43 0.43 0.43 Univ. of Michigan 0.53 0.53 0.53 

Johns Hopkins Univ. 0.63 0.63 0.63 Univ. of Minnesota 1.08 1.08 1.08 

Massachusetts Inst. of Tech 2.04 2.04 2.04 Univ. of Oregon 0.35 0.35 0.35 

Mayo Foundation 0.57 0.57 0.57 Univ. of Southern California 0.31 0.31 0.31 

Michigan State Univ. 0.92 0.92 0.92 Univ. of Texas Southwestern 0.42 0.42 0.42 

National Jewish Center 0.28 0.28 0.28 Univ. of Utah 1.19 1.19 1.19 

New Jersey Institute of Tech. 0.22 0.22 0.22 Univ. of Virginia Patent Fdn. 0.27 0.27 0.27 

Northwestern Univ. 0.53 0.53 0.53 Vanderbilt Univ. 0.26 0.26 0.26 

Ohio State Univ. 0.29 0.29 0.29 Wake Forest Univ. 1.01 1.01 1.01 

Ohio Univ. 0.45 0.45 0.45 Washington Univ. 0.53 0.53 0.53 

 

The results confirm that the models have the same super-efficiency scores when decision-

making units are feasible. The models identify eight institutions as efficient. There is one 
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infeasible DMU, the University of Akron. The super-efficiency scores obtained using 

Cook, et al.’s (2009) and Lee, et al.’s (2011) models are exactly the same because only 

one input variable is used in the model. On the other hand, Lovell and Rouse’s (2003) 

model generated an unrealistic score: efficiency of 865%. These results verify the coding 

and theoretical comparisons outlined in 3. 

 

 Super-Efficiency Scores and Malmquist Indexes 6.4.

The suggested output-oriented super-efficiency model is applied to the transformed data 

using Xpress-Mosel. The coding of both DEA and the Malmquist Index is provided in 

Appendix C. The results of the steps suggested for the super-efficiency scores (see 3) are 

presented in this section. 

 

 Step 1: Input Saving and Infeasible Decision-Making Units 6.4.1.

First, Lovell and Rouse’s (2003) model was applied to the data of expenditure from 1991 

to 1999 to identify super-efficient (efficient and feasible) or extremely super-efficient 

(efficient but infeasible) institutions. Eleven institutions were found to be efficient for at 

least 1 year. Three institutions were observed to be infeasible DMUs for at least 1 year: 

Brigham Young University in 1993, Ohio University in 1991 and 1992, and the 

University of Akron from 1994 to 1999 (Table 51). 
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Table 51: Super-efficient and extremely super-efficient institutions 

Institution 
Year of Expenditure 

1991 1992 1993 1994 1995 1996 1997 1998 1999 

Brigham Young Univ. SE SE ESE SE SE SE SE SE SE 

California Institute of Tech. 
 

SE SE SE SE SE SE SE SE 

City of Hope National 
Medic 

SE SE SE 
  

SE SE SE SE 

Dartmouth College 
    

SE 
    

Florida State Univ. 
  

SE SE SE SE SE 
  

Massachusetts Inst. of Tech SE SE SE SE SE SE SE SE SE 

Ohio Univ. ESE ESE 
       

Univ. of Akron SE 
 

SE ESE ESE ESE ESE ESE ESE 

Univ. of Minnesota 
        

SE 

Univ. of Utah 
       

SE SE 

Wake Forest Univ. 
        

SE 
 
Note: ESE = extremely super-efficient, SE = super-efficient 

 

Table 52 and Table 53 summarize the infeasible institutions and the input slacks of all 

DMUs, along with the frontier years of Malmquist Indexes, using Lee, et al.’s (2011) 

model. Dt(t) stands for super-efficiency scores of an institution in year t when compared 

with the frontier institutions in year t. For example, Ohio University is infeasible when its 

data for 1991 is compared to other frontier institutions in 1991 and it has input slack of 

0.34. The university is also infeasible when its data for 1992 is compared to the frontier 

of 1991. Its slack value is 0.01. 

 

The infeasible institutions listed in the tables are consistent with the extremely super-

efficient institutions identified by the Lovell and Rouse (2003) model. 
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Table 52: Input slacks of infeasible institutions in the frontier year t from 1991 to 1994 

Institutions 

Input Slack Table of Infeasible Decision-Making Units 

Frontier t = 1991 1992 1993 1994 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

 Ohio U. 0.34 
 

0.01 0.31 0.31 
 

0.02 
         

 Brigham Young U. 
       

0.35 0.35 
       

 U. of Akron  
         

0.26 
 

0.28 0.28 0.03 
 

0.27 

 
Note: Dt(t+1)=DEA efficiency of an institution at time t compared to the frontier at year t+1. 

  

Table 53: Input slacks of infeasible institutions in the frontier year t from 1995 to 1998 

Institutions 

Input Slack Table of Infeasible Decision-Making Units 

Frontier t = 1995 1996 1997 1998 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

D
t(

t)
 

D
t(

t+
1)

 

D
t+

1(
t)

 

D
t+

1(
t+

1)
 

 Ohio U. 
                

 Brigham Young U. 
                

 U. of Akron  0.27 
 

0.03 0.38 0.38 
 

0.14 0.07 0.07 0.07 
 

0.21 0.21 0.02 
 

0.49 

 
Note: Dt(t+1)=DEA efficiency of an institution at time t compared to the frontier at year t+1. 

 

 Step 2: Identify Zero-Data Issues 6.4.2.

Institutions identified as zero efficiency are listed in Table 54. An institution of which 

efficiency score bounded to zero is associated with the Type 2 zero issue. Zero output of 
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the referred DMUs (DMUs on the left hand side of the output constraints in the DEA 

model) causes the zero efficiency problem.  

 

Table 54: Institutions with zero-efficiency scores 

Evaluated Institutions (����) Year t 
���  

Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

Ohio U. 1991 0.00 0.31 0.00 0.26 

U. of Akron 1995 0.26 1.41 0.71 0.00 

U. of Akron 1996 0.00 0.58 1.01 0.30 

 
Note: Dt(t+1)=DEA efficiency of an institution at time t compared to the frontier at year t+1. 

 

Institutions with zero-data in output variables are presented in Table 55. Ohio University 

in 1991 in the reference set of the evaluated St. Jude Children’s Research Center in 1991 

has zero start-up (output). Ohio University in 1992 also referred itself in 1991, which also 

has zero value for start-up. Finally, the zero start-up of Ohio University in 1996 caused 

the zero efficiency of Ohio University in 1996. 

 

Table 55: Referred institutions causing type 2 zero issue 

Referred Institutions (����) 

(�� > �) 

Year of 
����  

Data of Referred Institutions 

EXP PTI STU LCI 

����: Ohio U. D1991(1991) 
����:  St. Jude Children's Res. Ctr. 

1991 9.21 1.84 0.00 2.68 

����: Ohio U. D1992(1991) 
����: Ohio U. 

1991 0.99 7.86 0.00 0.61 

����:U. of Akron D1996(1996) 
����: Ohio U.  

1996 1.13 3.46 0.00 0.59 

 
Note: DMU = decision-making unit, EXP = research expenditure, LCI = licensing income, PTI = number 

of U.S. patents issued, STU = number of start-ups. 
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 Step 3: Modify ��∗ Using the Nonradial Super-Efficiency Model 6.4.3.

The nonradial super-efficiency model outlined in 3 was applied to the efficiency scores: 

D1991(1991) and D1992(1991) of Ohio University, and D1996(1996) of the University 

of Akron. The result is presented in Table 56. 

 

Table 56: Nonradial output super-efficiency scores of institutions with type 2 zero issue 

Evaluated Institutions 
(����) 

Year 
t 

Nonradial Efficiency Modified Beta 

∅���
� ∅���

� ∅���
� 

���

=
∑ ∅∗���∈�

|�|
 

Ohio U. Dt(t) 1991 0.80 0.00 0.37 0.59 

Ohio U. Dt+1(t) 1991 3.42 0.00 0.08 1.75 

U. of Akron Dt(t) 1996 0.37 0.00 0.29 0.33 

 
Note: DMU = decision-making unit, LCI = licensing income, PTI = number of U.S. patents issued, STU = 

number of start-ups. 

 

The nonradial super-efficiency scores of the two institutions that have the Type 2 zero 

issue show zero efficiency for the output variable (start-up), which caused the zero issue. 

However, the efficiencies of other output variables (number of U.S. patents issued and 

licensing income) present non-zero. Therefore, the super-efficiency scores (��∗) of these 

institutions are replaced by the average of the other two nonradial output super-

efficiencies, as presented in the last column of Table 56. 
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 Step 4: Modified Super-Efficiency Scores Resolving the Zero Data Issue 6.4.4.

Finally, the modified super-efficiency scores of the 46 institutions were defined using 

Lee, et al.’s (2011) equation. (Modified super-efficiency scores are provided in Appendix 

D.) The super-efficiency scores of the 11 super-efficient or extremely super-efficient best 

practicing institutions during the period are summarized in Table 57. 

 

Table 57: Modified super-efficiency scores of 11 institutions (1991–1999) 

Institutions 
Modified Super-Efficience Scores; Dt(t) 

1991 1992 1993 1994 1995 1996 1997 1998 1999 

Brigham Young Univ. 2.09 1.16 17.66 3.25 1.25 1.93 2.22 2.05 1.88 

California Institute of 
Tech.  

1.52 1.57 1.13 1.25 1.67 2.36 2.73 3.15 

City of Hope National 
Medic 

5.17 2.47 1.74 
  

1.06 1.75 3.16 1.68 

Dartmouth College 
    

1.59 
    

Florida State Univ. 
  

1.41 2.43 1.02 1.94 1.33 
  

Massachusetts Inst. of 
Tech 

3.33 2.79 2.34 2.35 2.21 2.59 1.86 2.03 2.04 

Ohio Univ. 3.01* 5.11 
       

Univ. of Akron 2.11 
 

1.47 3.04 4.78 4.07* 4.26 2.95 4.76 

Univ. of Minnesota 
        

1.08 

Univ. of Utah 
       

1.07 1.19 

Wake Forest Univ. 
        

1.01 

 
Note: * = average of nonradial output super-efficiency scores are applied. 
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 Malmquist Indexes during the Evaluation Periods 6.4.5.

Modified super-efficiency scores for the years evaluated (t and t + 1) over each frontier 

year (t and t + 1) are used to calculate Malmquist Indexes. (Efficiency change, technical 

change, and Malmquist Index scores for the 46 institutions are provided in Appendix E.) 

 

 Summary 6.5.

The licensing or commercialization performance of 46 U.S. research institutions was 

explored using modified super-efficiency models and the Malmquist Index. The time-lag 

effect neutralized  data for the input of research expenditure from 1991 to 1999 and the 

outputs of patent applications, start-ups, and licensing income from 1992 to 2007 were 

used for the analysis. 

 

Brigham Young University and the Massachusetts Institute of Technology are identified 

as super-efficient universities for all the years. The California Institute of Technology and 

the University of Akron were super-efficient for most of the years studied, whereas 

Dartmouth College was efficient only in 1995. Ohio University was efficient in 1991 and 

1992, and inefficient since then. On the other hand, three universities became efficient in 

1998 or 1999. 

 

Table 58 presents the averages of universities’ scores during the periods studied. All of 

the institutions show improved performance (MI > 1) during the period. All of the 

institutions also experienced frontier expansion (TC > 1) during the period, which means 
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that all other best practicing institutions improved their performance. Also, all but 8 

institutions improved efficiency (EC > 1) over the same time period. The efficiency 

change of an evaluated DMU tends to decline if the frontier of the DMU is expanding 

(TC > 1) in the following year compared to an identical frontier, because the distance 

between the DMU and frontier becomes larger, as illustrated in 3. Given this, the 

improved efficiency is significant. This also indicates that performance improvements 

existed throughout all institutions. 
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Table 58: Average efficiency change, technical change, and Malmquist Index scores of the 
46 institutions 

Institutions 

Average over the 
periods 

Institutions 

Average over the 
periods 

EC TC MI EC TC MI 

Baylor College of Medicine 1.26 1.06 1.41 Oregon State Univ. 1.21 1.20 1.40 

Brigham & Women's 
Hospital, Inc. 

0.98 1.22 1.16 Penn State Univ. 1.08 1.08 1.13 

Brigham Young Univ. 2.61 1.59 6.12 Rutgers, The State Univ. 0.97 1.19 1.11 

California Institute of Tech. 1.21 1.04 1.30 
St. Jude Children's 
Research 

1.18 1.18 1.31 

Case Western Reserve Univ. 1.07 1.22 1.19 Tulane Univ. 0.92 1.15 1.02 

City of Hope National Medic 1.01 1.15 1.05 Univ. of Akron 1.23 1.23 1.41 

Clemson Univ. 1.02 1.11 1.02 Univ. of Arizona 1.06 1.08 1.14 

Colorado State Univ. 1.23 1.15 1.22 Univ. of Cincinnati 0.89 1.17 1.01 

Dartmouth College 1.50 1.20 1.77 Univ. of Connecticut 1.02 1.19 1.17 

Florida State Univ. 1.30 1.08 1.32 Univ. of Dayton 0.93 1.22 1.10 

Fred Hutchinson Cancer Res. 0.99 1.18 1.18 Univ. of Delaware 1.07 1.21 1.25 

Georgia Inst. of Technology 1.16 1.12 1.21 
Univ. of Iowa Research 
Fdn. 

1.08 1.15 1.19 

Harvard Univ. 1.07 1.10 1.19 
Univ. of Maryland, 
College 

1.44 1.16 1.47 

Indiana Univ. (ARTI) 1.19 1.17 1.29 Univ. of Michigan 1.17 1.14 1.41 

Johns Hopkins Univ. 1.11 1.14 1.25 Univ. of Minnesota 1.12 1.06 1.19 

Massachusetts Inst. of Tech 0.95 1.11 1.05 Univ. of Oregon 1.06 1.17 1.13 

Mayo Foundation 1.08 1.13 1.15 
Univ. of Southern 
California 

1.02 1.06 1.07 

Michigan State Univ. 1.05 1.10 1.11 
Univ. of Texas 
Southwestern 

1.03 1.20 1.19 

National Jewish Center 1.05 1.23 1.31 Univ. of Utah 1.16 1.13 1.20 

New Jersey Institute of Tech. 1.33 1.26 1.75 
Univ. of Virginia Patent 
Fdn. 

0.95 1.10 1.02 

Northwestern Univ. 1.16 1.16 1.29 Vanderbilt Univ. 1.11 1.14 1.22 

Ohio State Univ. 1.03 1.12 1.17 Wake Forest Univ. 1.33 1.16 1.39 

Ohio Univ. 1.00 1.20 1.08 Washington Univ. 1.06 1.12 1.15 

 
Note: EC = efficiency change, MI = Malmquist Index, TC = technical change. 
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Brigham Young University received the highest Malmquist Index score among the 46 

institutions. The university improved its performance 600%. This is not comparable to 

other institutions, considering that the next highest score is 1.77 for Dartmouth College. 

This bias came from Brigham Young’s extremely high super-efficiency score, 17.66, in 

1993. Excluding Brigham Young University, the average MI of other institutions is 1.23, 

which means that the institutions improved their performance by 23% every year. 
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7 Chapter 7. Characteristics of the Efficiency Change Patterns in U.S. Universities’ 

Technology Commercialization 

This chapter explores the licensing performance characteristics of 46 U.S. academic 

research institutions. For this purpose, time-lag effect neutralized  licensing data 

(expenditure, disclosure, patent applications, patents issued, licenses and options 

executed, number of start-ups, and licensing income) are analyzed, along with 

institutional types and other licensing-related characteristics identified in 3. Regression 

analysis and ANOVA tests were used to investigate their relationship of this data with 

licensing performance. Four types of licensing performance are explored in detail: (a) the 

cumulative licensing outputs of disclosure, patent applications, patents issued, licenses 

and options executed, number of start-up, and licensing income; (b) licensing outputs 

relative to expenditure; (c) super-efficiency scores; and (d) efficiency changes 

(Malmquist Indexes). 

 

 Licensing Data and Organizational Characteristics  7.1.

 Time-lag Effect Neutralized Licensing Data 7.1.1.

The licensing data were transformed using time-lag coefficients. As shown in 6, time-lag 

effects of patent applications, number of start-ups, and licensing income were neutralized 

on the basis of expenditure at year t. The same approach was applied to other licensing 

variables. Figure 40 illustrates the time-lag effect neutralized data of the seven licensing 

variables. 
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Figure 40: Data transform of the licensing data incorporating time-lag coefficients 
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 Types of the 46 Academic Research Institutions 7.1.2.

The 46 academic research institutions are classified by institution type (using definitions 

from the National Center for Education Statistics), private or public status, and whether 

the institution includes a medical school (Table 59). The majority (37) of the institutions 

are 4-year research universities with master’s and doctoral degree programs. Twenty-one 

of the 46 universities are private schools. About 56% of both the private and public 

universities include medical schools. The sample includes 9 non-university research 

institutions, comprising 3 medical research centers, 4 research and teaching institutions 

specialized in medicine, and 2 teaching and research hospitals. 
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Table 59: Types of the 46 academic research institutions 

Institution 
Types 

Private (21) Public (25) 

With medical 
school (12) 

Without medical 
school (9) 

With medical 
school (14) 

Without medical 
school (11) 

Universities (37) 

Research 
Universities (4 
years, including 
master’s and 
doctoral degree 
programs) (37) 

• Case Western 
Reserve Univ.                 

• Dartmouth College                               
• Harvard Univ.                              
• Johns Hopkins Univ.                        
• Northwestern Univ.                         
• Tulane Univ.                               
• Univ. of Southern 

California                
• Vanderbilt Univ.                           
• Wake Forest Univ.                          
• Washington Univ. in 

St. Louis  
(10) 

• Brigham Young 
Univ.                         

• California Institute of 
Tech.               

• Massachusetts 
Institute of Tech.           

• Univ. of Dayton  
(4) 

• Indiana Univ. at 
Indianapolis    

• Michigan State Univ.                       
• Ohio State Univ.                           
• Ohio Univ.                                 
• Univ. of Arizona                           
• Univ. of Cincinnati                        
• Univ. of Connecticut     
• Univ. of Iowa                              
• Univ. of Michigan - 

Ann Arbor               
• Univ. of Minnesota - 

Twin Cities            
• Univ. of Utah                              
• Univ. of Virginia  
(12) 

• Clemson Univ.                        
• Colorado State 

Univ.                        
• Florida State Univ.                        
• Georgia Institute of 

Tech.                  
• New Jersey Institute 

of Tech.               
• Oregon State Univ.                         
• Rutgers Univ.                
• Univ. of Akron                             
• Univ. of Delaware                          
• Univ. of Maryland, 

College Park             
• Univ. of Oregon  
(11) 

Non-Universities (Hospitals and Research Institutions) (9) 

Medical Research 
Centers (3) 

n/a • City of Hope 
National Med. Ctr.            

• Fred Hutchinson 
Cancer Res. Ctr.          

• National Jewish Med. 
and Res. Ctr.  

(3) 

n/a n/a 

Special-Focus 
Institutions – 
Medical (4) 

• Baylor College of 
Medicine      

• Mayo Foundation for 
Med. Edu. and Res.  

• (2) 

n/a • Penn State Milton S. 
Hershey Med. Ctr.      

• Univ. of Texas 
Southwestern Med. 
Ctr. 

• (2) 

n/a 

Teaching and 
Research Hospitals 
(2) 

n/a • Brigham and 
Women's Hosp.                    

• St. Jude Children's 
Res. Hosp.  

(2) 

n/a n/a 

 

 Characteristic Variables and Data Gathering 7.1.3.

Institutional characteristics include size, type, research intensity, prestige, and licensing 

experience and effort of a licensing office. The experience and degree of effort on the 

part of technology licensing offices is measured by age (2007 - year established), 
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licensing, and other full-time equivalents (FTEs). The variables and data sources are 

summarized in Table 60. 

 

Table 60: Institutional variables and data sources 

Types Variables Definitions Source 

Institution 
Characteristics 

Institution Type Institution types 
AUTM, 
NCES 

Private/Public Private or public status 
NCES, US 
News, 
Wikipedia 

Medical School The existence of medical school AUTM 

Academic 
Prestige and 
Research 

Faculty’s 
flexible time 

Number of students per faculty NCES 

Research 
Activity 

Total number of journal articles published from 
1991 to 2007 in Compendex and GEOBASE 
DB 

Engineering 
Village DB 

Academic 
Prestige 

Average ranking of “TOP Medical Schools” , 
“Best Research Ranking of Medical Schools” , 
“Best Patient Care Ranking of Medical 
Schools”, “Best Graduate Science School 
Ranking” , “Best Graduate Engineering School 
Ranking”    

US News 
Ranking, 
2011 

Efforts of 
Licensing 
Office 

Experience TTO age (2007- instituted year) 

AUTM 
Licensing effort Licensing FTEs in TLO 

Licensing 
support 

Other FTEs in TLO 

 
 

 Characteristics of the 46 Academic Research Institutions and Licensing Data 7.2.

 Selecting an ANOVA Test Method 7.2.1.

The ANOVA test is used to explore organizational differences. If the dependent variables 

follow normality, a one-way ANOVA is used; otherwise, the Kruskal-Wallis test is used. 

(The result of the normality test is presented in Appendix F.) If the p-value of the 
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Shapiro-Wilk statistics is greater than 0.05, the data satisfies normality. The results 

showed that medical research centers and institutions with a special focus on medicine 

satisfy normality. However, universities didn’t satisfy the normality condition, and 

teaching and research hospitals were not available for the test because of the small 

number of cases. Therefore, Kruskal-Wallis, a nonparametric ANOVA test, was used for 

comparisons of the groups. 

 

 Comparison of Licensing Data from Four Types of Institution 7.2.2.

The cumulative time-lag effect neutralized licensing data of four institutional types is 

summarized in Table 61. The special-focus medical institutions had the highest 

expenditure during the period, followed by universities and teaching and research 

hospitals. However, medical research centers showed higher licensing income than 

medical institutions. Universities and medical institutions recorded similar licensing 

income, but medical institutions showed higher values for all outcome variables, 

excluding licensing income. 
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Table 61: Case summaries by four institution types and cumulative time-lag effect 
neutralized licensing data (1991–1999) 

Institution 
Types 

Statistics 

EXP 
from 

1991 to 
1999 

DIS 
from 

1991 to 
1999 

PTF 
from 

1991 to 
1999 

PTI 
from 

1992 to 
2004 

LOE 
from 

1991 to 
1999 

STU 
from 

1995 to 
2007 

LCI from 
1996 to 
2004 

Universities Mean 128 777 352 199 291 30 443 

  
Standard 
Deviation 

122 725 373 214 249 34 606 

Medical 
Research 
Centers 

Mean 45 179 88 60 97 4 843 

  
Standard 
Deviation 

32 68 29 19 56 3 1,345 

Teaching 
and 
Research 
Hospitals 

Mean 67 431 203 125 237 10 212 

  
Standard 
Deviation 

52 249 198 119 36 14 240 

Special 
Focus 
Institution - 
Medical 

Mean 153 1,036 481 206 410 21 442 

  
Standard 
Deviation 

70 376 384 64 231 10 230 

Total Mean 122 746 339 188 287 27 459 

  
Standard 
Deviation 

114 682 359 197 239 32 626 

 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 

The result of the ANOVA test is presented in Table 62. Disclosure is the only statistically 

significant difference among the institution types. Universities and special focus medical 

institutions had a higher number of disclosures than the other two groups of institutions.  
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Table 62: Kruskal-Wallis test of cumulative licensing data over four institution types 

 Cumulative 
Time 

Aggregated 
Expenditure 
From 1991 

to 1999 

Cumulative 
Time 

Aggregated 
Disclosure 
From 1991 

to 1999 

Cumulative 
Time 

Aggregated 
Patent 

Applications 
From 1991 

to 1999 

Cumulative 
Time 

Aggregated 
Patents 

Issued From 
1992 to 

2004 

Cumulative 
Time 

Aggregated 
Licenses 

and Options 
Executed 

From 1991 
to 1999 

Cumulative 
Time 

Aggregated 
Start-Ups 

From 1995 to 
2007 

Cumulative 
Time 

Aggregated 
Licensing 
Income 

From 1996 
to 2004 

Chi-
square 

5.704 7.807 5.905 5.429 4.902 7.385 1.479 

Degrees of 
freedom 

3 3 3 3 3 3 3 

Asymp. 
Sig. 

.127 .050 .116 .143 .179 .061 .687 

 
Note: Grouping variable is institution type. 

 

The output variables per expenditure are summarized in Table 63. Medical research 

centers yielded higher licensing incomes than the total average. Hospitals had a smaller 

number of start-ups than other groups. The number of start-ups was greater than the total 

average. However, the ANOVA test (Table 64) showed that the differences among the 

variables relative to expenditure are not statistically significant for the four institution 

types. 
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Table 63: Four institution types and six cumulative time-lag effect neutralized licensing 
output variables per expenditure 

Institution 
Types 

Statistics 
Cumulative Time aggregated Licensing Variables per Expenditure 

DIS PTF PTI LOE STU LCI 

Universities Mean 8.16 3.35 1.91 2.85 .32 4.72 

  
Standard 
Deviation 

8.42 3.05 1.74 3.11 .42 7.28 

Medical 
Research 
Centers 

Mean 4.76 2.65 1.78 2.82 .12 23.62 

  
Standard 
Deviation 

1.70 1.44 .92 2.33 .09 38.51 

Teaching and 
Research 
Hospitals 

Mean 7.13 2.70 1.68 4.75 .09 2.53 

  
Standard 
Deviation 

1.84 .85 .47 3.16 .13 1.61 

Special-Focus 
Institution—
Medical 

Mean 7.16 2.91 1.46 3.22 .14 3.67 

  
Standard 
Deviation 

2.51 1.10 .48 2.35 .03 2.29 

Total Mean 7.81 3.24 1.85 2.96 .28 5.77 

  
Standard 
Deviation 

7.62 2.77 1.58 2.96 .38 11.48 

 
Note: DIS = number of disclosures, LCI = licensing income, LOE = number of licenses and options 

executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents issued, STU = number 

of start-ups. 
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Table 64: Kruskal-Wallis test of cumulative licensing data per expenditure by four 
institution types 

 Cumulative 
Disclosures per 

Expenditure 

Cumulative 
Patent 

Applications 
per 

Expenditure 

Cumulative 
Patents Issued 

per 
Expenditure 

Cumulative 
Licenses and 

Options 
Executed per 
Expenditure 

Cumulative 
Start-Ups per 
Expenditure 

Cumulative 
Licensing 

Income per 
Expenditure 

Chi-Square 2.114 .239 .687 2.244 6.178 .632 

Degrees of 
freedom 

3 3 3 3 3 3 

Asymp. Sig. .549 .971 .876 .523 .103 .889 

 
Note: Grouping variable is institution type. 

 

 Comparison of Licensing Data From Two Types of Institution 7.2.3.

The institutions were regrouped by universities and non-universities, including medical 

research centers, teaching and research hospitals, and special focus medical institutions, 

as summarized in Table 65. The Kruskal-Wallis test indicated no difference between the 

two groups (Table 66). (See normality test in Appendix G.) 

 



www.manaraa.com

 

224 
 

Table 65: Two institution types and cumulative time-lag effect neutralized licensing data 
(1991–1999) 

Institution 
Types 

Statistics 
EXP from 

1991 to 
1999 

DIS 
from 

1991 to 
1999 

PTF 
from 

1991 to 
1999 

PTI from 
1992 to 

2004 

LOE 
from 

1991 to 
1999 

STU 
from 

1995 to 
2007 

LCI 
from 

1996 to 
2004 

Non-
University 

Mean 98 616 288 140 267 13 525 

  
Standard 
Deviation 

73 480 309 89 206 11 739 

University Mean 128 777 352 199 291 30 443 

  
Standard 
Deviation 

122 725 373 214 249 34 606 

Total Mean 122 746 339 188 287 27 459 

  
Standard 
Deviation 

114 682 359 197 239 32 626 

 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 
 

Table 66: Kruskal-Wallis test of cumulative licensing data from two types of institution 

 Cumulative 
Time 

Aggregated 
Expenditure 
from 1991 

to 1999 

Cumulative 
Time 

Aggregated 
Disclosure 

from 1991 to 
1999 

Cumulative 
Time 

Aggregated 
Patent 

Applications 
from 1991 

to 1999 

Cumulative 
Time 

Aggregated 
Patents 

Issued from 
1992 to 

2004 

Cumulative 
Time 

Aggregated 
Licenses 

and Options 
Executed 
from 1991 

to 1999 

Cumulative 
Time 

Aggregated 
Start-Ups 

from 1995 to 
2007 

Cumulative 
Time 

Aggregated 
Licensing 
Income 

from 1996 
to 2004 

Chi-
Square 

.354 .184 .538 .262 .000 3.043 .161 

Degrees of 
Freedom 

1 1 1 1 1 1 1 

Asymp. 
Sig. 

.552 .668 .463 .608 .989 .081 .688 

 
Note: Grouping variable is institution type. 
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However, if cumulative variables per expenditure are considered (Table 67), universities 

had more start-ups than the other institutions (Table 68). Licensing income per 

expenditure of non-universities was higher than that of universities, but this was not 

statistically significant. 

 

Table 67: Two institution types and cumulative time-lag effect neutralized licensing data 
per expenditure 

Institution 
types 

Statistics 

Cumulative 
Disclosures 

per 
Expenditure 

Cumulative 
Patent 

Applications 
per 

Expenditure 

Cumulative 
Patents 

Issued per 
Expenditure 

Cumulative 
Licenses 

and Options 
Executed 

per 
Expenditure 

Cumulative 
Start-Ups 

per 
Expenditure 

Cumulative 
Licensing 

Income per 
Expenditure 

Non-
University 

Mean 6.35 2.78 1.61 3.43 .12 10.07 

  
Standard 
Deviation 

2.22 1.04 .59 2.29 .07 21.83 

University Mean 8.16 3.35 1.91 2.85 .32 4.72 

  
Standard 
Deviation 

8.42 3.05 1.74 3.11 .42 7.28 

Total Mean 7.81 3.24 1.85 2.96 .28 5.77 

  
Standard 
Deviation 

7.62 2.77 1.58 2.96 .38 11.48 
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Table 68: Kruskal-Wallis test of cumulative licensing data per expenditure by two types of 
institution 

  

Cumulative 
Disclosures 

per 
Expenditure 

Cumulative 
Patent 

Applications 
per 

Expenditure 

Cumulative 
Patents 

Issued per 
Expenditure 

Cumulative 
Licenses and 

Options 
Executed per 
Expenditure 

Cumulative 
Start-Ups per 
Expenditure 

Cumulative 
Licensing 

Income per 
Expenditure 

Chi-
Square 

.209 .069 .161 1.021 6.142 .538 

Degrees 
of 
Freedom 

1 1 1 1 1 1 

Asymp. 
Sig. 

.648 .793 .688 .312 .013 .463 

 
Note: Grouping variable is institution type—universities or non-universities (hospital research institutions) 
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 Characteristics of Licensing Performance 7.3.

 Characteristic Variables by Institutional Type 7.3.1.

The total number of journal articles from 1991 to 2007, and three technology licensing 

office–related variables, were sorted by institution type (Table 69). Universities had a 

much higher number of papers published in journals, and this is statistically significant 

(Table 70). No other significant difference was found. Each variable per expenditure 

shows the same result (Table 71 and Table 72). 

 

Table 69: Journal articles and technology licensing office–related variables by institution 
type 

Institution Type Statistics 

Total Number of 
Journal Articles from 

1991 to 2007 
(Compendex and 

GEOBASE) 

Age of 
Technology 
Licensing 

Office (2007 - 
Year 

Instituted) 

Licensing 
Full-Time 

Equivalents 
in 

Technology 
Licensing 
Offices 

Other Full-
Time 

Equivalents 
in 

Technology 
Licensing 
Offices 

Universities 

Mean 7,764 24 6 6 

Standard 
Deviation 

4,521 11 5 6 

Medical Research 
Centers 

Mean 301 18 3 2 

Standard 
Deviation 

133 4 1 1 

Teaching and 
Research Hospitals 

  

Mean 894 17 6 6 

Standard 
Deviation 

986 6 4 5 

Special-Focus 
Institution—
Medical 

Mean 1,071 20 8 9 

Standard 
Deviation 

638 3 3 5 

Total 

Mean 6,396 23 6 6 

Standard 
Deviation 

4,928 10 4 6 
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Table 70: Kruskal-Wallis test of journal papers and technology licensing office variables in 
four types of institution 

  

Total Number of 
Journal Articles 

from 1991 to 2007 
in Compendex 
and GEOBASE  

Age of 
Technology 

Licensing Office 
(2007 - Year 

Instituted) 

Licensing Full-
Time 

Equivalents in 
Technology 

Licensing Office 

Other Full-
Time 

Equivalents in 
Technology 
Licensing 

Office 

Chi-Square 19.354 2.678 3.511 4.895 
Degrees of 
freedom 

3 3 3 3 

Asymp. Sig. .000 .444 .319 .180 

 

Note: Grouping variable is institution type 

 

Table 71: Journal articles and technology licensing offices per expenditure by type of 
institution 

Institution Types Statistics 
Journal 

Articles per 
Expenditure 

Age of 
Technology 
Licensing 
Office per 

Expenditure 

Technology 
Licensing 

Office 
Licensing Full-

Time 
Equivalents per 

Expenditure 

Technology 
Licensing 

Office Other 
Full-Time 

Equivalents per 
Expenditure 

Universities 
  

Mean 118.15 0.37 0.07 0.06 

Standard 
Deviation 

201.93 0.41 0.07 0.06 

Medical Research 
Centers 
  

Mean 7.94 0.51 0.09 0.04 

Standard 
Deviation 

3.05 0.25 0.06 0.02 

Teaching and Research 
Hospitals 
  

Mean 10.88 0.30 0.09 0.08 

Standard 
Deviation 

6.22 0.14 0.01 0.02 

Special-Focus 
Institution—Medical 
  

Mean 9.06 0.15 0.06 0.08 

Standard 
Deviation 

6.05 0.05 0.04 0.06 

Total 
 

Mean 96.82 0.36 .07 0.06 

Standard 
Deviation 

185.84 0.38 0.06 0.05 
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Table 72: Kruskal-Wallis test of journal papers and technology licensing office variables 
per expenditure by four types of institution 

  

Total Number of 
Journal Articles 
per Expenditure 

from 1991 to 2007  

Age of 
Technology 

Licensing Office 
(2007 – Year 
Instituted) per 
Expenditure 

Licensing Full-
Time 

Equivalents in 
Technology 
Licensing 

Offices per 
Expenditure 

Other Full-
Time 

Equivalents in 
Technology 
Licensing 

Offices per 
Expenditure 

Chi-Square 19.354 2.678 3.511 4.895 
Degrees of 
Freedom 

3 3 3 3 

Asymp. Sig. .000 .444 .319 .180 

 
Note: Grouping variable is institution type 

 

 Correlation among Cumulative Licensing and Characteristic Variables 7.3.2.

Table 73 summarizes the correlation between cumulative time aggregated variables and 

institutional characteristic variables. Private institutions showed a positive correlation 

with all licensing variables, but these correlations were not statistically significant. 

Universities with medical schools were positively correlated with expenditure. All 

licensing variables, except for licensing income, had positive relationships with three 

TLO variables. The average ranking of the institutions was positively related to all 

licensing variables, except for expenditure and licensing income. In the case of journal 

articles, all licensing variables showed a positive correlation, except for licenses and 

options executed and licensing income. 

 



www.manaraa.com

 

230 
 

Table 73: Correlation matrix of cumulative licensing data and institutional variables 

Cumulative 
Time 

aggregated 
Licensing 
Variables 

Institution 
Type 

Private 
or Public 

Status 

Medical 
School 

Age of 
Technolo

gy 
Licensing 

Office  

Licensing 
Full-Time 

Equivalents in 
Technology 
Licensing 

Office 

Other Full-
Time 

Equivalents in 
Technology 
Licensing 

Offices 

Average 
Ranking 

Journal 
Articles 

(a) (b) 

EXP -0.02 0.11 0.10 0.33* 0.54** 0.51** 0.69** 0.18 0.30* 

DIS 0.02 0.09 0.11 0.13 0.68** 0.62** 0.63** 0.36** 0.38** 

PTF 0.03 0.07 0.15 0.12 0.59** 0.49** 0.61** 0.33* 0.31* 

PTI -0.05 0.12 0.16 0.09 0.69** 0.60** 0.63** 0.48** 0.32* 

LOE 0.07 0.04 0.20 0.28 0.68** 0.71** 0.75** 0.29* 0.27 

STU -0.16 0.22 0.08 -0.02 0.75** 0.58** 0.50** 0.51** 0.40** 

LCI 0.00 -0.05 0.15 -0.04 0.28 0.27 0.24 0.18 0.00 

 
Note: *p-value < 0.1, **p-value < 0.05 

(a) = Universities, medical research centers, teaching and research hospitals, or special focus institution–

medical 

(b) = Universities or non-universities 

 DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number of 

licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 

Table 74 summarizes the correlations among the variables related to research 

performance, institutions’ size or human research capacity, licensing offices, and 

licensing performance. 
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Table 74: Correlation among licensing characteristics and universities 

Other Characteristics 
Technology Licensing Office 

(TLO) 
Licensing Performance 

Category Characteristics TLO Age 

Licensing 
Full-Time 
Equivalen
ts in TLO 

Other 
Full-Time 
Equivalent
s in TLO 

Average 
Efficiency 

Average 
Malmquist 

Index 

Research 
Performance 

Science and technology 
journal articles 

0.29* 0.22 0.28 0.02 -0.16 

Best graduate engineering 
school ranking (higher is 

better) 
0.65** 0.45** 0.29 0.35* -0.09 

Best graduate science school 
ranking (higher is better) 

0.67** 0.44** 0.37* 0.38* -0.08 

Institutions’ 
size and 
research 
capacity 

(universities) 

Number of students per 
faculty 

-0.18 -0.13 -0.35* 0.16 0.24 

Total enrolled students in 
fall 2009 

0.07 0.20 0.10 0.05 0.09 

Total enrolled graduate 
students in fall 2009 

0.35* 0.43** 0.43** -0.15 -0.16 

 
Note: *p-value < 0.1, **p-value < 0.05 

 

The age of a technology licensing office was positively related to research performance 

and total number graduate students. Similarly, institutions with better performance in 

research had larger TLO staffs. Average licensing efficiency was positively related to the 

two research performance variables. On the other hand, significant relationships among 

licensing performance changes, the Malmquist Index, and other research- and size-related 

variables were not observed. 

 

 Regression of Six Licensing Outcome Variables to the Characteristics 7.3.3.

Variables 

The six licensing outcome variables were regressed to expenditure and characteristics 

variables, including journal articles, average rankings (higher is better), private status, 
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and presence of a medical school. The second model includes TLO variables such as 

TLO age, licensing FTEs in TLOs, and other FTEs in TLOs (Table 75). Private or public 

status and existence of a medical school were not significant, throughout all models. The 

journal articles were positively related to disclosure and start-up. The average ranking of 

an institution was related only to number of patents issued. More licensing FTEs were 

related to more licenses and options executed. On the other hand, older TLOs were 

related to more start-ups. 
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Table 75: Regression of licensing outcomes to characteristic variables (four institution types 
excluded) 

Variables 

Cumulative Licensing Outcomes 

Disclosure 
Patent 

Applications 
Patents Issued 

Licenses and 
Options 

Executed 
Start-Ups 

Licensing 
Income 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1&2 

Expenditure 0.65** 0.40** 0.82** 0.71** 0.66** 0.41** 0.71** 0.38** 0.46** 0.19 - 

Journal 
Articles 

0.26* 0.22 0.13 0.10 0.21 0.15 0.13 0.10 0.36** 0.26* - 

Average 
Ranking 

0.13 0.05 0.05 0.01 0.24* 0.16 0.10 0.00 0.31* 0.20 - 

Private 
Status 

0.11 0.10 0.10 0.09 0.10 0.09 0.15 0.17 0.07 0.03 - 

Medical 
School 

-0.08 -0.16 -0.15 -0.17 -0.08 -0.14 0.06 -0.06 -0.12 -0.17 - 

Technology 
Licensing 
Office Age  

 0.18  0.14  0.23  0.08  0.43** - 

Licensing 
Full-Time 
Equivalents 
in 
Technology 
Licensing 
Office 

 0.23  0.02  0.14  0.32**  0.14 - 

Other Full-
Time 
Equivalents 
in 
Technology 
Licensing 
Offices 

 0.12  0.05  0.14  0.26  0.05 - 

Adjuste
d R2 

0.56** 0.72** 0.69** 0.74** 0.60** 0.68** 0.62** 0.79** 0.48** 0.67** - 

 
Note: *p-value < 0.1, **p-value < 0.05 

 

The four institution types were added to the regression models above, as summarized in 

Table 76. Most results were similar to those of the previous regression models, except for 

the effect of existence of a medical school and average ranking. The existence of a 
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medical school was negatively related to disclosure and patent applications. An additional 

significant effect of average ranking to patents issued was observed when institution 

types were considered. The presence of a special-focus medical institution showed a 

positive effect on disclosure, whereas effects of other types were not significant. Other 

licensing FTE was also positively related to licenses and options executed. No significant 

relationship with licensing income was observed. 
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Table 76: Regression of licensing outcomes to characteristic variables (four institution types) 

Variables 

Cumulative Licensing Outcomes 

Disclosure 
Patent 

Applications 
Patents Issued 

Licenses and 
Options 

Executed 
Start-Ups 

Licensing 
Income 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 

Model 
2 

Model 
1 & 2 

Expenditure 0.55** 0.37** 0.75** 0.69** 0.57** 0.37** 0.63** 0.36** 0.35** 0.14 - 

Journal 
Articles 

0.32* 0.30* 0.18 0.16 0.18 0.14 0.18 0.14 0.28* 0.25* - 

Average 
Ranking 

0.32* 0.17 0.17 0.11 0.16** 0.34** 0.24 0.09 0.60** 0.12** - 

Private Status 0.18 0.17 0.15 0.13 0.15 0.14 0.19 0.21* 0.14 0.09 - 

Medical School -0.17 -0.23* -0.21* -0..22* -0.12 -0.18 0.01 -0.10 -0.18 -0.23* - 

Universities 0.15 0.14 0.12 0.08 0.17 0.17 0.00 0.09 0.32 0.24 - 

Medical 
Research 
Centers 

-0.21 -0.11 -0.12 -0.10 -0.27 -0.18 -0.23 -0.08 -0.31 -0.21 - 

Special-Focus 
Institutions 
(Medical) 

0.34* 0.34* 0.26 0.24 0.20 0.19 0.17 0.19 0.29 0.25 - 

Technology 
Licensing 
Office Age  

 
0.17 

 
0.14 

 
0.16 

 
0.06 

 
0.35* 

 

Licensing Full-
Time 
Equivalents in 
Technology 
Licensing 
Office 

 
0.21 

 
0.01 

 
0.13 

 
0.31** 

 
0.13 

 

Other Full-
Time 
Equivalents in 
Technology 
Licensing 
Office 

 
0.08 

 
0.02 

 
0.15 

 
0.24* 

 
0.05 

 

Adjusted R2 0.64** 0.74** 0.72** 0.71** 0.66** 0.71** 0.65** 0.80** 0.60** 0.73** - 

 
Note: *p-value < 0.1, **p-value < 0.05 

Values are standard coefficients. 
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  Regression of Efficiency and Efficiency Changes to Characteristic 7.3.4.

Variables 

The average efficiency and Malmquist Index scores were regressed to the characteristic 

variables (Table 77). The existence of a medical school had a negative effect on average 

efficiency. TLO licensing-related FTE per expenditure was positively related to both 

efficiency and efficiency change. Other FTE per expenditure was related to higher 

efficiency. Private institutions showed positive effects on average efficiency change. 

 

Table 77: Regression of efficiency and efficiency changes to characteristic variables (four 
institution types) 

Independent Variables 
Dependent Variable 

Average Efficiency Average Malmquist Index 

Total Number of Journal Articles From 
1991 to 2007 

0.13 0.04 

Average of Hospital, Medical, Science, 
and Engineering Ranking 

-0.12 -0.11 

Private or Public Status 0.21 0.27* 
Existence of a Medical School -0.34** -0.18 
Universities 0.42 0.36 
Medical Research Centers 0.30 0.07 
Special-Focus Institutions (Medical) 0.28 0.25 
Technology Licensing Office Age (2007 
– year instituted) 

0.21 -0.02 

Technology Licensing Office Licensing 
Full-Time Equivalents per Expenditure 

0.34* 0.61** 

Technology Licensing Office Other 
Full-Time Equivalents per Expenditure 

0.41** 0.16 

Adjusted R2
 0.55** 0.54** 

 
Note: *p-value < 0.1, **p-value < 0.05 

Values are standard coefficients. 
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 Summary 7.4.

The significant correlations among the characteristics and licensing data are summarized 

in Table 78. All licensing data, except for licensing income, was positively related to 

TLO and research performance. 

 

Table 78: Summary of correlations 

Cumulative Time 
Effect Neutralized 

Licensing Variables 
by Aggregated 

Time-Lag 

Medical 
School 

Technolog
y Licensing 
Office Age 

Licensing Full-
Time Equivalents 

in Technology 
Licensing Office 

Other Full-Time 
Equivalents in 
Technology 

Licensing Offices 

Average 
Ranking 

Journal 
Articles 

EXP Positive Positive Positive Positive 
 

Positive 

DIS  Positive Positive Positive Positive Positive 

PTF  Positive Positive Positive Positive Positive 

PTI  Positive Positive Positive Positive Positive 

LOE  Positive Positive Positive Positive 
 

STU  Positive Positive Positive Positive Positive 

LCI   
 

   

 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 

Results of regression of licensing data on research expenditure and other characteristics 

are summarized in Table 79. 
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Table 79: Summary of the results of regression of licensing data 

Cumulative 
Time Effect 
Neutralized 
Licensing 

Variables by 
Aggregated 
Time-Lag 

(Dependent) 

EXP 
Private 
Status 

Medical 
School 

Technology 
Licensing 

Office Age 

Licensing Full-
Time 

Equivalents in 
Technology 
Licensing 

Office 

Other Full-
Time 

Equivalents 
in 

Technology 
Licensing 

Offices 

Average 
Ranking 

Journal 
Articles 

DIS Positive  Negative    Positive Positive 

PTF Positive  Negative      

PTI Positive      Positive  

LOE Positive    Positive Positive   

STU Positive  Negative Positive   Positive Positive 

LCI     
 

   

 
Note: DIS = number of disclosures, EXP = research expenditure, LCI = licensing income, LOE = number 

of licenses and options executed, PTF = number of U.S. patent applications, PTI = number of U.S. patents 

issued, STU = number of start-ups. 

 

Regression results of efficiency scores on characteristics are summarized in Table 80. 

 

Table 80: Summary of the results of regression of efficiency and efficiency change 

Cumulative Time 
Effect Neutralized 

Licensing 
Variables by 

Aggregated Time-
Lag (Dependent) 

Private 
Status 

Medical 
School 

Technology 
Licensing 
Office Age 

Licensing Full-
Time 

Equivalents per 
Expenditure 

Other Full-
Time 

Equivalents 
per 

Expenditure 

Average 
Ranking 

Journal 
Articles 

Average 
Efficiency 

 Negative  Positive Positive Positive Positive 

Average 
Malmquist Index 

Positive   Positive    
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8Chapter 8. Conclusion 

 Discussion and Implications 8.1.

The implications of this study are discussed in this section. 

 

 Licensing Time Lags and Licensing Strategy 8.1.1.

The individual time-lag relationships between two licensing variables are extended to 

multipath lag effects on licensing income as a final result of licensing activities. A 

summary of the time-lag effects is presented in Table 81. 

 

Table 81: Time-lag effects for licensing 

 
Expenditure Disclosure 

Patent 
Application 

Patent 
Issued 

Licenses and 
Options 

Executed 
Start-Up 

Weighted average lag 
duration 
(Aggregated time lag 
effect X time lag) 

10.3 years 8.8 6.7 7.3 3.3 3.5 

Lag durations with 
high aggregated 
coefficient value 

5 (0.09),  
8 (0.10) 

4 (0.12),  
5 (0.11) 

3 (0.21), 
11 (0.09) 

7 (0.18), 
8 (0.20) 

3 (0.50),  
8 (0.15) 

0 (0.54), 
8 (0.30) 

 

The average lag from expenditure to licensing income throughout all possible paths is 

10.3 years, and the most plausible lags, which have higher standard lag coefficient values, 

are 5 (9%) and 8 (10%) years. The overall lags range from 0 to 27 years. Time lags 

between disclosure and licensing income range from zero to 22 years, with an average of 
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8.8 years. The time lag periods which have the highest effect from the disclosure to 

licensing income are 4 (12%) and 5 (11%) years. 

 

Patent applications and patents issued have similar average lags—6.7 and 7.3 years, 

respectively. Licenses and options executed and start-up also have similar average lag 

periods—3.3 and 3.5 years, respectively. The average lags of the two licensing activities 

are smaller than any other lags. This is a reasonable result because these two variables 

represent actual licensing practice, which has a high correlation to licensing income. 

 

Interesting observations can be made when the two time lags of the highest aggregated 

coefficients are selected for each licensing variable, as shown in Table 81. Although 

disclosure and patents issued have consecutive lags, two time lags of all others are far 

from each other. This might reflect different licensing paths among them. 

 

The first path is a very attractive invention or technology for which a licensing 

opportunity is identified at an early stage of the licensing process. The three short lag 

periods of 5-year lags from expenditure, 3 years from patent, and 3 years from licenses 

and options exercised could be related to this pattern. The second pattern is a delayed or 

shelved invention [60]. There could be many reasons for delay. For example, a 

technology or disclosure may need further breakthrough, market needs may not be clear 

enough, faculty inventors may not be actively involved in licensing, or an academic 

institution may be conservative in licensing and negotiation [36, 51, 111]. 
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The longer lags, such as 8 years from expenditure, 11 years from patent application, and 

8 years from licenses and options exercised, could be associated with the second pattern. 

Start-up at t - 0 has the highest effect on licensing. This is consistent with findings from 

other researchers [23, 55, 114, 121]. Generally, universities prefer a short-term cash 

reward from a spin-off, rather than long-term royalty or equity. 

 

The cumulative total time-lag effects are illustrated in Figure 41. The cumulative lags of 

start-up reflect two distinct license royalty strategies of spin-offs. The first 50% of start –

up is associated with long periods of 7 and 8 years, and the other half is related to zero or 

one year duration until royalties are collected. The longer period results from annual 

royalty or equity, which adds years before a new start-up generates revenues. In 

interviews with university licensing managers, Bray and Lee [23] found that it is not 

uncommon for a spin-off to take 8 years until it starts to generate revenue; it can take 10 

years after licensing is negotiated, if the invention requires clinical trials. The shorter 

time lags represent the lump sum cash payment option, which occurs within a year or two. 
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Figure 41: Cumulative time-lag effects 

 

Three distinctive lag periods for licensing and options executed were observed: long term 

(8 to 7 years), medium term (3 to 4 years), and short term (up to 1 year). These lag 

periods are related to the royalty types that an institution receives from the license, such 

as equity, running royalty, and lump sum by an auction and up-front payment [23, 121]. 

 

In summary, research institution licensing offices should consider the time lags in 

licensing and incorporate these lags into their licensing strategy. Depending on the policy 

and financial goal of the university’s licensing, the licensing office can develop a 

licensing portfolio for an invention so that the desirable cash flow of multiple licensing 

negotiations is achieved. This also suggests that university administrators and 

stakeholders outside of the university must understand that licensing is a time-consuming 

process. Therefore, they should not enforce a certain licensing format or apply a faculty 

reward system with a short time frame. 
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 Relative Licensing Performance of Academic Research Institutions 8.1.2.

The overall licensing performance of the 46 universities examined is presented in Table 

82. The average efficiency of all institutions during the period investigated is 0.65 (SE), 

and they improved 33% (MI) annually over the period. Although most scores show a 

small change every year, MI in 1992 and SE in 1993 show relatively higher scores 

because of the extremely high super-efficiency scores of Brigham Young University in 

1993. 

 

Table 82: Average scores of the 46 institutions by year 

Year of 
Expenditure (t) 

Average Super-
Efficiency at t 

Average 
Efficiency 

Change (From t 
to t + 1) 

Average 
Technical 
Change 

(From t to t + 1) 

Average 
Malmquist Index 
(From t to t + 1) 

1991 0.70 1.02 1.70 1.69 

1992 0.61 1.41 1.23 2.20 

1993 0.86 1.10 0.97 1.01 

1994 0.59 1.19 1.11 1.25 

1995 0.59 1.21 0.98 1.13 

1996 0.64 0.97 1.23 1.18 

1997 0.63 0.99 1.14 1.08 

1998 0.60 1.23 0.92 1.12 

1999 0.66 - - - 

Average 0.65 1.14 1.16 1.33 

 
Note: t = time 

 

Two distinct periods of performance change were observed, as illustrated in Figure 42. 

The average efficiency change scores of the 46 institutions were higher than the technical 

change scores from 1992 to 1995. This is the period dominated by the licensing 
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performance of institutions that were catching up. During this period, inefficient 

institutions improved their performance significantly. On the other hand, the prominent 

performance improvements of the best practicing institutions occurred after this period. 

  

 

 
Figure 42: Catch-up and frontier expansion dominating periods 

 
 

Figure 43 shows the location of the super-efficient (SE ≥	 1) and inefficient (SE < 1) 

institutions along the two dimensions of average super-efficiency scores and Malmquist 

Indexes. There were 7 super-efficient institutions, including (in the order of efficiency 

scores) Brigham Young University, the University of Akron, the Massachusetts Institute 

of Technology, City of Hope National Medical Center, California Institute of Technology, 

and Florida State University. The result is consistent with the best practicing universities 

identified by Thursby and Kemp [122], except for City of Hope, which is a research 

hospital.  

 

These institutions have similar performance changes, although Brigham Young 

University improved significantly because the university had an extreme score in 1993. 
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The licensing performances of Brigham Young University, the University of Akron, the 

Massachusetts Institute of Technology, and City of Hope were more than two times 

higher than that of other low-performance (inefficient) institutions. 

 

 

Figure 43: Average super-efficiency and efficiency change (Malmquist Index) of the 46 
institutions 

 

The Massachusetts Institute of Technology and the California Institute of Technology are 

prominent engineering schools that have very intensive research activity because of their 

higher research funding. Other studies [6, 62, 122] also identified these schools as the 

best-performing universities in commercialization. City of Hope is a private teaching and 
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research hospital, ranked number 17 in the area of cancer treatment in a 2010 national 

hospital ranking by US News. The hospital, established in 1913, is famous for its 

contribution to the development of synthetic human insulin in 1978 as well as for its 

dedicated comprehensive cancer center. In 2007, the institution had the highest licensing 

income of the 46 institutions, $118 million. However, its average expenditure during the 

period was relatively low, $77 million, which ranked 38 out of 46. This is a good 

example of the licensing and commercialization effect of the medical and biotechnology 

areas. Florida State University is similar to City of Hope. The average expenditure of the 

university is low, ranked 30th, but its licensing income is high, ranked 4th. 

 

On the other hand, three universities that had both low expenditure and low licensing 

income were identified as best-practicing institutions. The University of Akron, Ohio 

University and Brigham Young University had the lowest average research expenditures, 

ranked 44, 45, and 46, respectively. Their licensing income rankings are 39, 37, and 26, 

respectively. 

 

The 46 institutions are grouped by average super-efficiency scores and Malmquist 

Indexes, as presented in Table 83 and Table 84. 
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Table 83: Low-efficiency group (39 institutions) 

Malmquist 
Index 

Super-efficiency score 

< 30% 
Exceptionally 

Low Efficiency 

< 50% 
Very Low 
Efficiency 

< 70% 
Low Efficiency 

< 90% 
Slightly Low 

Efficiency 

 < 110% 
Low 

Improvement 

 Clemson Univ. 
 Tulane Univ. 

(2) 

 Univ. of Cincinnati 
 Univ. of Dayton 
 Univ. of Southern 
California 
 Univ. of Virginia 
Patent Fdn. 
(4) 

  

< 130% 
Medium 

Improvement 

 Case Western 
Reserve Univ. 
 Colorado State 

Univ. 
 Fred Hutchinson 
Cancer Res. 
 Indiana Univ. 
(ARTI) 
 Univ. of Arizona 
 Univ. of 
Connecticut 
Vanderbilt Univ. 
(7) 

 Brigham & 
Women's Hospital, 
Inc. 
 Mayo Foundation 
 Northwestern Univ. 
 Ohio State Univ. 
 Penn State Univ. 
 Rutgers, The State 
Univ. 
 Univ. of Delaware 
 Univ. of Iowa 
Research Fdn. 
 Univ. of Oregon 
 Univ. of Texas 
Southwestern 
 Washington Univ. 
(11) 

 Georgia Inst. of 
Technology 
 Harvard Univ. 
 Johns Hopkins 
Univ. 
 Univ. of Minnesota 
(4) 

 Michigan State 
Univ. 
 Univ. of Utah 
(2) 

< 150% 
High 

Improvement 

 Baylor College of 
Medicine 
 National Jewish 

Center 
 Oregon State Univ. 
 St. Jude Children's 
Researc 
(4) 

 Univ. of Maryland, 
College 
 Univ. of Michigan 
 Wake Forest Univ. 
(3) 

  

< 200% 
Very High 

Improvement 

  Dartmouth College 
 New Jersey 
Institute of Tech. 
(2) 

  

> 200% 
Exceptional 
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Table 84: High-efficiency group (7 institutions) 

Malmquist 
Index 

Super-efficiency score 

< 100% 
Good 

Efficiency 

< 200% 
Super-Efficiency 

< 300% 
Very High 

Super-Efficiency 

> 300% 
Exceptionally 
High Super-
Efficiency 

< 110% 
Low 

Improvement 
 

 Ohio Univ. 
(1) 

 City of Hope 
National Medic 
 Massachusetts Inst. 
of Tech 
(2) 

 

< 130% 
Medium 

Improvement 
 

 California Institute 
of Tech. 
(1) 

  

< 150% 
High 

Improvement 
 

 Florida State Univ. 
(1) 

 
 Univ. of Akron 
(1) 

< 200% 
Very High 

Improvement 
    

> 200% 
Exceptional 

   
 Brigham Young 
Univ. 
(1) 

  
 

A. Top Research Institutions with Low Licensing Performance 

The research intensity and licensing performance of prestigious research universities are 

compared to explore the reasons for the differences in licensing performance. For this 

purpose, research intensity is defined as a ratio of publications per unit of expenditure to 

number of students per faculty. Generally, the ratio of students to faculty is used as an 

indicator of available time and effort that a faculty may use to focus on his or her 

research. Journal publications relative to research expenditure are used as an 

approximation of research performance. The research intensity of the six universities and 

their licensing activity are compared in Table 84. 
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Table 85: Research and licensing activity of top research institutions 

Institutions 

Research Activity Licensing Activity 

Number of 
students per 
faculty (a) 

Journal 
publications 
per unit of 
research 

expenditure 
(b) 

Research 
Intensity 
 (b)/(a) 

Technolog
y licensing 
office age 

(2007 - 
year 

instituted) 

Licensing 
full-time 

equivalents 
per unit of 
expenditur

e 

Licensing 
full-time 

equivalents 
per total 

disclosure* 

Super-Efficient 
and Excellent 
Research 
Performance 
Institutions  

(100% ≤ 
Super-
Efficiency) 

California 
Institute of 
Technology 

3 132.80 44.27 29 0.05 1.80 

Massachuset
ts Institute 

of 
Technology 

8 23.04 2.88 67 0.05 5.60 

Average 5.50 77.92 14.17 48.00 0.05 3.70 

Inefficient but 
Good Research 
Performance 
Institutions 
(50% ≤	Super-
Efficiency < 
70%) 

Georgia 
Inst. of Tech 

18 86.29 4.79 17 0.05 5.70 

Harvard 
Univ. 

7 44.37 6.34 30 0.02 5.90 

Johns 
Hopkins 

Univ. 
11 11.27 1.02 34 0.01 4.10 

Univ. of 
Minnesota 

21 40.12 1.91 50 0.12 16.30 

Average 11.33 56.31 4.97 37.83 0.05 8.00 
 
Note: * = The number of the licensing full-time equivalents per total disclosure = 1,000s 

 

Four institutions have potential to improve their licensing performance: the Georgia 

Institute of Technology, Harvard University, Johns Hopkins University, and the 

University of Minnesota. With high research expenditures (among the top 10 for 

expenditure out of the 46 institutions) and excellent academic reputations, these 

institutions are located in the same group of low efficiency (efficiency scores between 50% 

and 70%) and medium improvement (Malmquist Indexes between 110% and 130%), 

whereas some other research universities, including the California Institute of 
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Technology and the Massachusetts Institute of Technology, which also have excellent 

academic reputations, demonstrate super-efficient licensing performance. 

 

The California Institute of Technology has outstanding research intensity and licensing 

performance. The superiority of its licensing performance is a result of its research 

performance in science and engineering, which advances technologies for commercial 

purposes. The other super-efficient licensing university, the Massachusetts Institute of 

Technology, has a research intensity similar to that of inefficient universities Johns 

Hopkins University and the University of Minnesota. The research expenditure of Johns 

Hopkins is the highest among the 46 institutions. 

 

Although the 2011 medical school rankings place Johns Hopkins University first and 

Harvard University third, their engineering school rankings are 26th (Johns Hopkins) and 

18th (Harvard). The reason for the lagging licensing performance of the two universities 

is their focus on medical and life sciences rather than engineering. This is supported by 

the finding that a university with a medical school has lower licensing performance than a 

university without a medical school. The licensing FTEs per expenditure of Harvard 

University and Johns Hopkins University are relatively smaller than that of the super-

efficient universities but similar to the level of licensing FTEs per disclosure of the 

Massachusetts Institute of Technology. This implies that the licensing offices of the two 

inefficient universities have the capability to deal with the disclosure for licensing, but 

not enough licensing experts, given their research scale. Therefore, more licensing 
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professionals in the medical and life sciences area would significantly improve their 

licensing performance. 

 

The Georgia Institute of Technology shows no difference from the Massachusetts 

Institute of Technology in either research activity or licensing efforts, except for the age 

of the licensing office. The licensing office of Georgia Tech has the shortest history 

among the six universities listed in Table 85, and its age is lower than the average age, 23 

years, among all 46 institutions. Thus, it can be inferred that, for a long period, the 

university did not have a strong policy supporting licensing, even after the U.S. 

government emphasized technology transfer from universities with the Bayh-Dole Act of 

1980. The lower annual efficiency change of 21%, which is less than the average of 33% 

for the 46 institutions, shows that their licensing practice did not improve significantly 

compared with other institutions, even though they had a similar levels of TLO staff. 

Therefore, the inefficient licensing performance is related to their lack of experience and 

past lack of strong policies supporting licensing, rather than to insufficient research 

performance or licensing staff. 

 

On the other hand, the University of Minnesota has a greater number of licensing staff 

but lower licensing performance. The research intensity of the university is similar to that 

of Johns Hopkins University and the Massachusetts Institute of Technology, but the 

number of students per faculty is very high compared with the others. Lach and 

Schankerman [64] found that university faculty size is positively related to license 
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income. This implies that, although the research performance of the University of 

Minnesota is not low, its faculty is suffering from a lack of time to actively engage in 

licensing activity. Therefore, university support to secure faculty time to collaborate with 

industry and the licensing office, as well as a reward system for faculty contributions to 

commercialization, are recommended [114]. 

 

The licensing gaps between the two groups cannot be reduced without significant 

improvement in the licensing practices universities support, even though the inefficient 

universities have high potential based on excellent research performance. 

 

B. Medium-Level Research Institutions with Low Licensing Performance  

Michigan State University and the University of Utah, which are ranked 17 and 22 in 

research expenditure, respectively, are located in the same position of slightly low 

efficiency scores and medium licensing improvement. Dartmouth College and the New 

Jersey Institute of Technology, which have very low research expenditure as numbers 35 

and 42 out of the 46 institutions, improved licensing performance significantly while still 

having very low efficiency. Their best engineering school rankings in 2011 are between 

50 and 100. Although according to their rankings they are similar in terms of academic 

prestige, their licensing performances are quite different (Table 86). 
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Table 86: Research and licensing activity of research institutions with low school rankings 
(50 to 100) 

Institutions (Engineering 
School Rankings in 2011) 

Research Activity Licensing Activity 

Number of 
students per 
faculty (a) 

Journal 
publications 
relative to 
research 

expenditure 
(b) 

Research 
intensity 
 (b)/(a) 

Technology 
licensing 
office age 
(2007 - 

instituted 
year) 

Licensing 
full-time 

equivalents 
relative to 

expenditure 

Licensing 
full-time 

equivalents 
per total 

disclosures* 

Super-Efficient  

(100% ≤ 
Super-
Efficiency) 

Florida State 
Univ. (92) 

25.00 98.60 3.94 11.00 0.05 0.02 

Slightly Low 
Efficiency 

(70 ≤ Full-
Time 
Equivalents < 
90 %) 

Michigan 
State Univ. 

(52) 
17.00 82.28 4.84 15.00 0.04 0.01 

Univ. of 
Utah (60) 

15.00 73.85 4.92 39.00 0.09 0.01 

Average 16.00 78.07 4.88 27.00 0.06 0.01 
Very Low 
Efficiency but 
Highly 
Improving 
(50 ≤	Full-
Time 
Equivalents < 
70%) 

Dartmouth 
College (50) 

8.00 48.67 6.08 22.00 0.04 0.01 

New Jersey 
Inst. of 

Tech. (92) 
15.00 103.50 6.90 17.00 0.14 0.01 

Average 11.50 76.09 6.49 19.50 0.09 0.01 

 
Note: * = The number of the licensing full-time equivalents per total disclosure = 1,000s 

 

The differences between the slightly low-efficient and very low-efficient groups in 

research and licensing activity are not clear. However, if the annual changes in licensing 

FTEs are considered, the difference becomes obvious (Figure 44). The slightly low-

efficient universities have increased their licensing staffs significantly so that they are 

similar to or greater than the average of the 46 institutions. On the other hand, the 

licensing FTEs of the very low-efficient universities have stayed at a similar level over 

the years. This implies that the University of Utah and Michigan State University have 

continuous support for licensing and have emphasized licensing activity. 
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Figure 44: Technology licensing offices’ full-time equivalents for slightly efficient and low-
efficiency universities 

 

The Malmquist Index shows that the very low-efficiency group, Dartmouth College and 

the New Jersey Institute of Technology, have greatly improved their licensing 

performance. However, their effort was not superior to the other two universities with a 

similar level of academic prestige. Considering the shorter history of licensing offices at 

the very low-efficiency universities, the significant improvement reflects their late 

engagement in licensing. Therefore, even though the efficiency changes of the two 

universities demonstrate their improvement, more significant catch-up to the other, 

superior universities would not be possible without further investment through their 

licensing offices. 
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C. Low-Level Research Institutions with Very Low Licensing Performance 

This study also found that a less prestigious university with small research expenditure 

can achieve significant licensing outcomes. The engineering schools of Ohio University, 

the University of Akron, and Brigham Young University are ranked 138, 125, and 107, 

respectively, but they are identified as a super-efficient licensing group. This suggests 

that a university with a prestigious reputation or low research expenditure can improve its 

licensing performance. 

 

 Licensing Practices and Related Characteristics of Academic Research 8.1.3.

Institutions 

A. Institution Types and Licensing  

Only certain differences in licensing data are observed among the institution types. 

Universities and special-focus medical institutions have more disclosures than others. 

When universities and non-universities are compared, universities have more start-ups 

than non-universities. This might be due to universities’ greater human resources in the 

form of students and faculty. Universities, in particular, encourage student entrepreneurs 

to create spin-offs and involve faculty in new start-ups. 

 

However, caution is needed when these results are associated with institution types, 

because only a small number of cases (9 out of 46) are involved with non-university 

institutions. 
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B. Research Performance, Academic Prestige, and Licensing Performance 

Siegel, et al. [113] suggested that a trade-off exists between university technology 

commercialization and research performance. On the other hand, some other studies 

found that higher-quality faculty members, who may bring better-quality research, tend to 

be reluctant to spend their time in the commercialization of their findings [60]. If 

faculties get involved in commercialization activity, they may spend less effort or time on 

their primary duties of teaching and research [96]. 

 

The present study found that licensing variables have a positive correlation with TLO 

variables, ranking, and journal articles. Journal articles and average ranking indirectly 

reflect research intensity and its quality. The results show that an institution with high 

research performance has more disclosures and start-ups. Moreover, a better-than-

average ranking is significantly related to more patents issued. This shows that patents 

issued (though not patent applications) reflect the quality of inventions. The effect of the 

existence of a medical school on disclosure, patent applications, and start-up is negative. 

This shows that, although a medical school spends more research funds, the quantity of 

new inventions is relatively small, resulting in fewer start-ups. 

 

One surprising result is that academic prestige, as measured by academic ranking, is 

negatively related to both licensing efficiency and efficiency change. However, the study 

also found that not only highly prestigious instructions such as the California Institute of 

Technology and the Massachusetts Institute of Technology but also less prestigious ones 
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with lower research expenditure presented high licensing performance. Considering that 

most of the super-efficient institutions are prestigious ones, the result does not strongly 

prove that less-prestigious institutions have better licensing performance. Instead, it can 

be understood that not all prestigious institutions emphasize licensing, and therefore they 

could improve their performance significantly. Another possible interpretation is that the 

negative relationships reflect the dominant catch-up efforts of less-efficient institutions, 

which was observed in 6. Baldini, et al.’s [11] study found that institution size relative to 

total budget does not have a statistically significant relationship with patents. Therefore, 

an effective licensing process and organizational support are very important to achieving 

better licensing performance. 

 

C. Effort, Age, and Licensing Performance of Technology Licensing Offices 

The results of the present study support the findings of other studies [111] [96] [121] [76] 

[64] [47]. Although the effect of a TLO’s age on efficiency and efficiency change is not 

statistically significant, TLO licensing FTEs and other FTEs relative to expenditure 

contribute to better licensing performance. The study also confirms that TLO age is 

associated with the number of start-ups. TLO age represents the history of a TLO and 

therefore its experience. A more experienced TLO with a long history presents good 

support for start-ups. However, more human resources (licensing and other FTEs), rather 

than experience (TLO age), are related to more licenses and options executed. This 

supports the idea that TLO size is important to an institution’s successful licensing 

negotiation. 
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D. Institutions’ Private or Public Status and Licensing Performance 

The results also show that private institutions are more active than public institutions in 

licensing and that their performance is therefore significantly higher. 

 

E. Existence of Medical School and Licensing Performance 

The results of the existing empirical studies of U.S. institutions on the effect of the 

presence of a medical school conflict with each other. Powers [96] and Thursby, et al. 

[121] found a positive but statistically insignificant relationship when licensing income 

was regressed. Anderson, et al. [6] and Thursby and Kemp [122] found that the existence 

of a medical school exerted a negative effect on licensing efficiency, whereas Siegel, et 

al.’s [111] study found the opposite effect on efficiency. 

 

However, if these results and methods are compared carefully, as summarized in Table 

87, it appears that the differences come from the methods employed. Powers [96] and 

Thursby, et al.’s [121] results are consistent in that the effect of a medical school on the 

quantity of licensing income is positive. However, the two other studies [6, 122], using 

the same DEA method, both present a negative effect. These results show that a 

university with a medical school benefits from a greater amount of research funding and 

licensing income. Universities with medical schools also demonstrated the greatest range 

in profitability [28, 127]. On the other hand, their relative licensing performances were 
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not better than that of universities without a medical school. Regarding the insignificant 

effect of a medical school, Powers [96] mentioned, “While this result may seem 

counterintuitive, it is also true that many of the advances in the life sciences do not 

emerge from medical schools but rather from within arts and sciences units” (p. 40). 

 

Table 87: Effect of the existence of a medical school in a university 

Literature 
Effect on Licensing Income Effect on Licensing Efficiency 

Result Method Result Method 

Anderson, et al. [6]   
Negative 
(insignificant) 

Data 
envelopment 
analysis 

Siegel, et al. [111]   
Positive 
(insignificant) 

Stochastic 
frontier 
efficiency 

Powers [96] 
Positive 
(insignificant) 

Regression   

Thursby, et al. [121] 
Positive 
(insignificant) 

Regression   

Thursby and Kemp 
[122] 

  
Negative 
(significant) 

Data 
envelopment 
analysis 

 

The results show that an institution with a medical school obtains more research funding, 

which has a statistically significant and negative effect on efficiency scores. Also, an 

institution with a medical school showed less improvement in efficiency scores during 

the period examined, but this result was not statistically significant. 
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 Recommendations 8.1.4.

This section summarizes the finding and implications, presenting recommendations for 

licensing managers, university administrators, and governments as well as researchers 

interested in measuring the licensing performance of research institutions. 

 

A. A university with a medical school 

Many studies, including the present study, identified that a university with a medical 

school has lower licensing performance because it has relatively fewer licensing 

outcomes relative to its significant amount of research funding in the medical area. The 

lower licensing productivity of a medical school arises from several facts [97]: 

1) Research in bioscience is difficult to license in the market, due to high 

manufacturing costs and production complexity. 

2) Bioscience technologies require huge research and development investment and 

commercialization expenditures. 

3) The technologies require government regulatory approval, which takes long a 

time and many resources, with no guarantee of approval. 

4) Physicians and medical researchers are not motivated to engage in the 

commercialization process. 

 

Therefore, a licensing office must develop a specific screening and marketing process for 

a bioscience technology. A well-structured assessment and screening process in the early 

stage of commercialization will reduce the risk inherent in the study of bioscience 
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technology and will promote funding opportunities for the further investment required for 

commercialization. A licensing staff specialized in the medical area is essential to the 

success of the process. 

 

Although it is necessary for a licensing office to improve its process of commercializing 

bioscience technologies, the nature of R & D in a medical school should be considered 

when its licensing performance is evaluated. Considering the uniqueness of the licensing 

practice in a medical school, the licensing performance of a medical school should be 

separated from that of other science and engineering departments when a benchmarking 

study is done for multiple universities. 

 

B. Public and private status of an institution and its licensing practice 

The study indicates that a private university has better licensing than a public one. As 

Powers [96] described in detail, a private university has more flexibility in terms of 

organization structure and operations in its budget, which enables the university to adapt 

itself to a new policy and environment. Although a private university is financially more 

independent from state government, it relies more on student tuitions and other revenue 

to secure its budget. As a result, technology licensing and commercialization have been 

considered important financial resources since the Bayh-Dole Act of 1980 allowed 

universities to obtain benefit from licensing.  The changes of private institutions’ 

licensing efficiency observed in this this study justify their motivation and effort. 
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On the other hand, public schools are limited in the ways they may secure and manage 

their budget for their own purposes while also getting support from a state government. 

The allocation and management of their revenue are controlled heavily by the 

government. This financial dependency, an insufficient reward system, and a rigid 

organizational structure make it difficult to motivate faculties to actively engage in 

licensing practice. Without significant changes in policies and budget operations on the 

part of both universities and government, licensing practice will to some extent be limited. 

 

C. Organizational environment encouraging faculty engagement 

This study reveals that, given the same level of research and licensing activity, some 

institutions had higher licensing productivity than others. One characteristic is faculty 

time for research, observed by looking at the number of students per faculty member. 

Although this study is limited in identifying detailed organizational and personal aspects 

relative to licensing practice, other studies have provided evidence and insight on these 

topics. Based on the findings from this and other research [114], the following 

organizational and personal policies to promote licensing activity are recommended: 

1) An appropriate reward system should be applied to motivate and compensate an 

inventor for his or her engagement. 

2) Depending on an institution’s goals and commercialization preferences, an 

inventor should be allowed to devote his or her time to licensing activity. 

3) An institution should not be too aggressive in exercising intellectual property 

rights. However, there is a trade-off between aggressive and flexible exercise of 
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rights. Aggressive practice reduces the number of licensing agreements but 

increases revenue from the agreements [111]. Therefore, the potential value of the 

technology should be considered along with institutional direction for the use of 

intellectual property. 

4) Institutions’ perception of licensing should be changed. A licensing exercise 

should not be considered a trade-off between teaching and research. Also, there 

still exists a common misunderstanding that capitalizing on technology that was 

funded by the public limits the public good. 

 

D. Appropriate licensing office skills and resources 

Results indicate that licensing offices’ history and staff are related to better licensing 

performance. Given the same research performance and inventor involvement, the 

success of commercialization relies on the staff’s available time, expertise in the 

technology area, and marketing and negotiation skills. 
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 Contributions 8.2.

The present study outlines an approach for assessing the licensing performance of 

academic research institutions over time and explores these performances with regard to 

related institutional characteristics. For this purpose, the study developed two new 

methods: a time-lag identifying process using a distributed lag model and an unstructured 

regression coefficient structure, and a three-stage modified super-efficiency DEA model 

resolving computational infeasibility and zero-data issues. The results provide 

stakeholders in government agencies, companies, research organizations, and other 

universities with a better understanding of licensing practices, filling in the gaps 

identified by the literature review. 

 

 Time-Lag Effect (Gap 1) 8.2.1.

Time duration exists in licensing activity and outcomes because of the inherent 

processing time of the activities. Although most researchers acknowledge the time lag of 

variables in studies identifying the relationships between characteristics and outcomes 

(performance) of licensing, they don’t apply time lags among the variables in their 

analysis. Some studies ignore the effect of the time lag and others use the average of the 

variables during the investigated period to mitigate the effect. However, if time lags are 

not incorporated into a model, caution is needed when interpreting the results [55]. With 

regard to their study measuring commercialization efficiencies of 112 U.S. universities, 

for example, Thursby and Kemp [122] commented, “We are mixing inputs and outputs 

from different points in time. To the extent that there are lags involved, our result must be 
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considered with caution” (p. 114). To understand the practices and performance of 

academic research institution technology commercialization, time lags should be 

considered in the analysis. 

 

The time-lag identifying process developed this study provides a better approach to 

measuring the possible time lags in licensing or commercialization. The time lags 

identified by the approach also could enable researchers to build a more elaborate and 

realistic model for evaluating academic research institution technology licensing. 

 

 Measurement of Academic Research Institution Technology 8.2.2.

Commercialization Performance and Influencing Characteristics (Gaps 2, 3, 

and 4) 

ARITC involves various ambiguous aspects. The perceptions, goals, policies, and 

regulations of an institution concerning technology commercialization could vary, along 

with the organizational specification. Indeed, different stakeholders, such as university 

administrators, faculty, and TLO managers, have different perceptions of the importance 

of commercialization outcomes. The heterogeneous characteristics surrounding ARITCs 

make it difficult to measure performance. Therefore, benchmarking studies are a 

widespread method in this area and can provide insights into the relative performance of 

ARITC practices. 

 

Although the efficiency of a benchmarking study identifies best practitioners and 

inefficient institutions, there exists a limitation in implementing the results in the real 
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world and in understanding the rational reasons for low or high efficiency. Therefore, 

additional analysis, such as regression, has been performed to explain the characteristics 

influencing efficiency. However, because the efficiency score created by stochastic 

frontier estimation or data envelopment analysis puts all unknown specifications of an 

institution into a single number, the identified relationships between the efficiency score 

and organizational characteristics also includes aspects that are ambiguous for 

interpretation and application in the real world. 

 

The approach outlined in this study could overcome those limitations by exploring 

organizational characteristics and various aspects of efficiency (average efficiency, 

efficiency changes, technical changes, and Malmquist Index) over time. The approach 

provides insight into organizational practice and related polices and characteristics by 

examining their relationships with the efficiency and patterns of ARITC. 

 

For this purpose, this study developed a three-stage super-efficiency VRS model, which 

overcomes the current limitations in DEA theory. First, the study resolves computational 

infeasibility caused by an extreme data point when variable returns to scale is applied. 

For this purpose, the strengths and limitations of the three current approaches [33, 66, 70] 

have been discussed and the models have been tested using published data. Second, a 

nonradial model has been applied to deal with zero-data issues. 
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 Assumptions 8.3.

Two types of assumptions have been made in this research: an assumption about the 

expert and an assumption about measurements and the models. 

 

First, it is assumed that the expert is capable of identifying and understanding all 

technology licensing mechanisms and related licensing contracts and laws, and that one 

expert’s perceptions and knowledge of the assigned area can represent the related 

activities of other institutions. 

 

The second group of assumptions is made when developing the model and selecting 

variables. Such assumptions include the following: 

1. The relative performance of technology licensing reflects different levels of 

practice and policy. 

2. The selected outputs and inputs for the DEA models are broad enough to include 

all possible outcomes and resources. 

3. Licensing efficiency could be different, and different performances can be 

understood in the context of efficiency changes and selected institutional variables. 

4. The time-lag coefficients identified in this study represent lag effects common to 

all institutions. 
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 Limitations 8.4.

Although this research sheds light on the efficiency and importance of ARITC, there also 

are inherent limitations, such as the following: 

 

1. Institutions’ policies for technology commercialization are not observed and 

measured, yet such policies and other related characteristics are expected to 

influence licensing efficiencies. Therefore, it is worth examining the overall 

relationship between efficiency and effectiveness, and identifying the 

organizational characteristics that influence them. 

2. The time lags identified in this study are general and common differences 

observed from the data for the time period. The approach of the study is 

reasonable enough to observe general trends in commercialization and the 

performance of ARITC. However, some unique technology commercialization 

time lags cannot be explained. 

3. The quality of the disclosures is related to faculty quality [60]. After the 

inventions are disclosed, faculty quality also will positively influence patents, 

licensing, and licensing income [47, 96]. However, productive faculties inventing 

valuable technology, which has high potential in the market, are not always 

positively related to the more or better disclosure [60]. For instance, prominent 

faculty members may be reluctant to be involved in technology commercialization 

activity through disclosure and patenting of their inventions because they prefer 
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conducting research and publishing their findings in journals [60, 96]. The present 

study does not consider those characteristics. 

 

 Future Work 8.5.

The following areas are suggested for future work. 

 

1. Case studies of academic research institutions’ technology commercialization 

practices could help increase model reliability and improve understanding of 

certain unique institutional situations that could not be observed in this study. 

2. The licensing time lags identified in the study need to be explored further by 

using case studies of several academic research institutions. 

3. This study explores a limited number of institutional characteristics that influence 

licensing performance. A dedicated survey could help to identify other 

characteristics that explain time lags and licensing performance. 
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10Appendix A. STATA Procedure for the PDL Regression Analysis 

* Document: http://www.statajournal.com/sjpdf.html?articlenum=st0065 
* generate the pdl(12,4) data  pdl(p=lag,q=degree) 
 
* sim_arma x, ar(.9) spin(10000) nobs(300) 
 
* data should x _t y 
* lag = 3 degree = 2 
 
 
* tsset year 
 
/* Program Start */ 
 
program pdlconstraints 
version 8.2 
args p q matname 
local r = `p' - `q' 
local m = `q' + 1 
matrix `matname' = J(`r',`p'+3,0) 
forvalues i = 1/`r' { 
local x = `i' + `q'+ 1 
local k = -1 
local d = 1 
forvalues j = `x'(-1)`i' { 
local k = `k' + 1 
matrix `matname'[`i',`j'] = `d'*comb(`m',`k') 
local d = -1*`d' 
} 
} 
end 
 
 
program vandermonde 
version 8.2 
syntax name, Numlist(numlist) 
local p: word count `numlist' 
tokenize `numlist' 
matrix `namelist' = J(`p',`p',0) 
forvalues c = 1/`p' { 



www.manaraa.com

 

281 
 

forvalues r = 1/`p' { 
matrix `namelist'[`r',`c'] = (``c'')^(`r' - 1) 
} 
} 
end 
 
 
program zvars 
version 8.2 
syntax varname, Matrix(name) 
local n = colsof(`matrix') 
local k = rowsof(`matrix') 
forvalues i = 1/`n' { 
local z`i' `matrix'[1,`i']*`varlist' 
} 
forvalues j = 2/`k' { 
forvalues i = 1/`n' { 
local m = `j' - 1 
local z`i' `z`i'' + `matrix'[`j',`i']*L`m'.`varlist' 
} 
} 
forvalues i = 1/`n' { 
generate double z`i' = `z`i'' 
} 
end 
 
 
program recover, eclass 
version 8.2 
syntax name, Matrix(name) 
tempname alpha v w B V 
matrix `alpha' = e(b) 
matrix `v' = e(V) 
local r = rowsof(`matrix') 
matrix `w' = J(`r',1,0) 
matrix `matrix' = `matrix',`w' 
local c = colsof(`matrix') 
matrix `w' = J(1,`c',0) 
matrix `w'[1,`c'] = 1 
matrix `matrix' = `matrix'\(`w') 
matrix `B' = (`matrix'*(`alpha')')' 
matrix `V' = `matrix'*`v'*(`matrix')' 
matrix rownames `B' = y 
local r = `r'-1 
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local names `namelist' 
forvalues i = 1/`r' { 
local names `names' L`i'.`namelist' 
} 
local names `names' _cons 
matrix colnames `B' = `names' 
matrix rownames `V' = `names' 
matrix colnames `V' = `names' 
ereturn post `B' `V' 
ereturn local cmd recover 
ereturn display 
end 
 
 
 
use "D:\STATA\Dissertation\12. Final_Simulation_Test  (Paper 
Work)\Stata_Simulation_Data.dta", clear 
 
tsset year 
 
******Data set 3 (x3 and y3) 
/* ***** INPUT 1 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 5 degree = 2 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 5 2 A 
*Input (0/lag) 
cnsreg y3 L(0/5).x3, constraints(A) 
*xtgls y3 L(0/8).x3, noconstant panels(hetero) 
 
/*PDL(lag = 8, degree = 4) */ 
*Input n(0/lag) 
vandermonde V, n(0/5) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..3,1..6] 
 
matrix W = V' 
 
 
zvars x3, matrix(W) 
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/*regress */ 
regress y3 z* 
* regress y z*, noconstant 
 
recover x3, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 
 
 
/* ***** INPUT 2 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 5 degree = 3 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 5 3 A 
*Input (0/lag) 
cnsreg y3 L(0/5).x3, constraints(A) 
 
*Input n(0/lag) 
vandermonde V, n(0/5) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..4,1..6] 
 
matrix W = V' 
 
 
zvars x3, matrix(W) 
 
/*regress */ 
regress y3 z* 
* regress y z*, noconstant 
 
recover x3, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 z4 
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/* ***** INPUT 3 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 4 degree = 3 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 4 3 A 
*Input (0/lag) 
cnsreg y3 L(0/4).x3, constraints(A) 
 
*Input n(0/lag) 
vandermonde V, n(0/4) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..4,1..5] 
 
matrix W = V' 
 
 
zvars x3, matrix(W) 
 
/*regress */ 
regress y3 z* 
* regress y z*, noconstant 
 
recover x3, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 z4 
 
 
 
/* ***** INPUT 4 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 4 degree = 2 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 4 2 A 
*Input (0/lag) 
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cnsreg y3 L(0/4).x3, constraints(A) 
 
*Input n(0/lag) 
vandermonde V, n(0/4) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..3,1..5] 
 
matrix W = V' 
 
 
zvars x3, matrix(W) 
 
/*regress */ 
regress y3 z* 
* regress y z*, noconstant 
 
recover x3, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 
 
 
 
******Data set 4 (x4 and y4) 
/* ***** INPUT 1 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 5 degree = 2 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 5 2 A 
*Input (0/lag) 
cnsreg y4 L(0/5).x4, constraints(A) 
*xtgls y4 L(0/8).x4, noconstant panels(hetero) 
 
/*PDL(lag = 8, degree = 4) */ 
*Input n(0/lag) 
vandermonde V, n(0/5) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..3,1..6] 
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matrix W = V' 
 
 
zvars x4, matrix(W) 
 
/*regress */ 
regress y4 z* 
* regress y z*, noconstant 
 
recover x4, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 
 
 
/* ***** INPUT 2 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 5 degree = 3 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 5 3 A 
*Input (0/lag) 
cnsreg y4 L(0/5).x4, constraints(A) 
 
*Input n(0/lag) 
vandermonde V, n(0/5) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..4,1..6] 
 
matrix W = V' 
 
 
zvars x4, matrix(W) 
 
/*regress */ 
regress y4 z* 
* regress y z*, noconstant 
 
recover x4, matrix(W) 
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est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 z4 
 
 
 
/* ***** INPUT 3 ******  */ 
 
/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 4 degree = 3 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 4 3 A 
*Input (0/lag) 
cnsreg y4 L(0/4).x4, constraints(A) 
 
*Input n(0/lag) 
vandermonde V, n(0/4) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..4,1..5] 
 
matrix W = V' 
 
 
zvars x4, matrix(W) 
 
/*regress */ 
regress y4 z* 
* regress y z*, noconstant 
 
recover x4, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 z4 
 
 
 
/* ***** INPUT 4 ******  */ 
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/* PDL commend with parameters; p (lag) q (degree) mathname */ 
 
*Input lag = 4 degree = 2 matrix_name 
* pdlconstraints lag degree 
pdlconstraints 4 2 A 
*Input (0/lag) 
cnsreg y4 L(0/4).x4, constraints(A) 
 
*Input n(0/lag) 
vandermonde V, n(0/4) 
 
*Input 1... degree+1 , 1...lag+1 
matrix V = V[1..3,1..5] 
 
matrix W = V' 
 
 
zvars x4, matrix(W) 
 
/*regress */ 
regress y4 z* 
* regress y z*, noconstant 
 
recover x4, matrix(W) 
 
est store DEG4 
 
* drop variables generated from the previous PDL model 
drop z1 z2 z3 
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11Appendix B. Licensing Paths of Each Variable to the Licensing Income 

 
Figure B1: Licensing paths to the licensing income from the expenditure 
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Figure B2: Licensing paths to the licensing income from the disclosure 

 

 
Figure B3: Licensing paths to the licensing income from the patent filed 

 

 
Figure B4: Licensing paths to the licensing income from the patent issued 
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Figure B5: Licensing paths to the licensing income from the license and option executed 

 
 

 
Figure B6: Licensing paths to the licensing income from the start-up 
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12Appendix C. Xpress Mosel Coding of Modified Super-Efficiency Model 

1. Radial VRS SE Malmquist Model 
 
model "Malmquist" 
uses "mmxprs"; !gain access to the Xpress-Optimizer solver 
 
! Dynamic Data 2-2: 46 U.S. research institutions licensing data! 
! Dynamic Data 2-3: Coefficients has been recalculated by adding lag0, 46 Inst., excluding ID47 
 
! Time-Lag Neutralized Data using 1st distance lags (coefficients from regression without transform 
functions) 
! Factored Data: EXP from  1991 to 2002,PTI , STU, LCI from 1992 to 2007 
! Data set from 1991 to 1999 
! one input and three outputs model 
 
parameters 
 DATAFILE = "DYNAMIC_DATA3.txt" 
  
 end-parameters 
 
writeln ("DATAFILE = ",DATAFILE)  
 
 
declarations 
   ALLYEAR = 1991..1999 ! DATA FROM Year 1991-1999 
   DMU = 1..46 ! Set of Decision Making Units, hard coded 
   ID: array (ALLYEAR, DMU) of integer   ! Set of DMU ID 
   YEAR: array (ALLYEAR, DMU) of integer ! load Year 
   NAMES: array (ALLYEAR, DMU) of string   ! Set of DMU Names 
   EXP, PTI, STU, LCI:  array (ALLYEAR, DMU) of real   ! Set of input and output variables 
    
   START_YEAR = 1991    ! First Year of Malmquist Index (CHANGE FROM 
MFRONTYEAR-1 TO MFRONYEAR) 
   END_YEAR = 1998    ! Last Year of Malmquist Index (CHNAGE FROM MTOYEAR - 1 
TO MTOYEAR) 
    
           
 EC: array (ALLYEAR, DMU) of real 
 TC: array (ALLYEAR, DMU) of real  
 MI: array (ALLYEAR, DMU) of real  
 
! Definition of decision variables       
   Dtt_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   Dtt1_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   Dt1t_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   Dt1t1_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
    
   !Dtt: Dt(t)     
   Dtt_Radial_Beta:  array (ALLYEAR, DMU) of mpvar 
   !Dtt1: Dt(t+1) 
   Dtt1_Radial_Beta:  array (ALLYEAR, DMU) of mpvar 
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   !Dt1t: Dt+1(t) 
   Dt1t_Radial_Beta:  array (ALLYEAR, DMU) of mpvar 
   !Dt1t1: Dt+1(t+1)    
   Dt1t1_Radial_Beta:  array (ALLYEAR, DMU) of mpvar 
   
  ! Variables to count number of input saving from the stage 1 
 DTT_Num_Saving: array (ALLYEAR, DMU) of real 
 DTT1_Num_Saving: array (ALLYEAR, DMU) of real 
 DT1T_Num_Saving: array (ALLYEAR, DMU) of real 
 DT1T1_Num_Saving: array (ALLYEAR, DMU) of real 
 
  ! Stage 1 Lambda variables 
   Stage1_Dtt_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
   Stage1_Dtt1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
   Stage1_Dt1t_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
   Stage1_Dt1t1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
 
 
   Stage2_Dtt_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
   Stage2_Dtt1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
   Stage2_Dt1t_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
   Stage2_Dt1t1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
 
! Variables to store input saving from the stage 1 
   DTT_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
   DTT1_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
   DT1T_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
   DT1T1_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
 
! Variables to store beta from the stage 2 
   !Dtt: Dt(t) 
   DTT_RADIAL_BETA_VALUE: array (ALLYEAR, DMU) of real 
   !Dtt1: Dt(t+1) 
   DTT1_RADIAL_BETA_VALUE: array (ALLYEAR, DMU) of real 
   !Dt1t: Dt+1(t) 
   DT1T_RADIAL_BETA_VALUE: array (ALLYEAR, DMU) of real 
   !Dt1t1: Dt+1(t+1) 
   DT1T1_RADIAL_BETA_VALUE: array (ALLYEAR, DMU) of real 
    
! Final super efficiency phi 
   !Dtt: Dt(t) 
   DTT_SE_phi: array (ALLYEAR, DMU) of real 
   !Dtt1: Dt(t+1) 
   DTT1_SE_phi: array (ALLYEAR, DMU) of real 
   !Dt1t: Dt+1(t) 
   DT1T_SE_phi: array (ALLYEAR, DMU) of real 
   !Dt1t1: Dt+1(t+1) 
   DT1T1_SE_phi: array (ALLYEAR, DMU) of real 
   
! Final super efficiency SE (>1; efficinecy) = SAME WITH _SE_Phi 
   !Dtt: Dt(t) 
   DTT_SE: array (ALLYEAR, DMU) of real 
   !Dtt1: Dt(t+1) 



www.manaraa.com

 

294 
 

   DTT1_SE: array (ALLYEAR, DMU) of real 
   !Dt1t: Dt+1(t) 
   DT1T_SE: array (ALLYEAR, DMU) of real 
   !Dt1t1: Dt+1(t+1) 
   DT1T1_SE: array (ALLYEAR, DMU) of real 
 
end-declarations 
 
 
initializations from DATAFILE 
  ID NAMES YEAR EXP PTI STU LCI   ! Reads the data from the above file 
end-initializations 
 
! ### Stage 1: Calculate input saving. If it is not zero, the DMU is an infeasible case. ###  
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
  !Dtt: Dt(t) 
  sum (j in DMU | j<>k) Stage1_Dtt_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage1_Dtt_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage1_Dtt_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - Dtt_Exp_Saving 
(dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dtt1: Dt(t+1) 
  sum (j in DMU) Stage1_Dtt1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage1_Dtt1_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - Dtt1_Exp_Saving 
(dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
   
  !Dt1t: Dt+1(t) 
  sum (j in DMU) Stage1_Dt1t_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage1_Dt1t_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - Dt1t_Exp_Saving 
(dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dt1t1: Dt+1(t+1) 
  sum (j in DMU | j<>k) Stage1_Dt1t1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage1_Dt1t1_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage1_Dt1t1_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - 
Dt1t1_Exp_Saving (dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
 
 end-do ! evalute all DMUs  
  
end-do ! Stage1 DEA loop, evaluate all years (from start year to end year) 
 
minimize (sum (k in DMU, dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year 
<= END_YEAR)  
(Dtt_Exp_Saving (dmu_year, k)+ Dtt1_Exp_Saving (dmu_year, k)+ Dt1t_Exp_Saving (dmu_year, k)+ 
Dt1t1_Exp_Saving (dmu_year, k))) !object function: minimize input saving 
 
! count number of saving 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
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  !Dtt: Dt(t) 
  if getsol(Dtt_Exp_Saving (dmu_year, k)) >0 then DTT_Num_Saving(dmu_year,k) := 1 
  end-if 
  !Dtt1: Dt(t) 
  if getsol(Dtt1_Exp_Saving (dmu_year, k)) >0 then DTT1_Num_Saving(dmu_year,k) := 1 
  end-if 
  !Dt1t: Dt(t) 
  if getsol(Dt1t_Exp_Saving (dmu_year, k)) >0 then DT1T_Num_Saving(dmu_year,k) := 1 
  end-if 
  !Dt1t1: Dt(t) 
  if getsol(Dt1t1_Exp_Saving (dmu_year, k)) >0 then DT1T1_Num_Saving(dmu_year,k) := 1 
  end-if 
  
 end-do 
  
end-do 
 
! Print input saving table 
writeln("") 
writeln("Input Saving Table") 
writeln("=====================") 
writeln("ID", " ","INST NAME","        ", "YEAR"," ", "INPUT SAVING") 
writeln("                                              Dtt   Dtt1   Dt1t   Dt1t1") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) 
do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", 
dmu_year,"\t",getsol(Dtt_Exp_Saving (dmu_year, k)),"\t",getsol(Dtt1_Exp_Saving (dmu_year, 
k)),"\t",getsol(Dt1t_Exp_Saving (dmu_year, k)),"\t",getsol(Dt1t1_Exp_Saving (dmu_year, k)) )   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
! Store input savings to the variables for the stage2 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 forall(k in DMU) do  
  DTT_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dtt_Exp_Saving (dmu_year, k)) 
  DTT1_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dtt1_Exp_Saving (dmu_year, k)) 
  DT1T_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dt1t_Exp_Saving (dmu_year, k)) 
  DT1T1_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dt1t1_Exp_Saving (dmu_year, k)) 
 end-do 
end-do 
 
! #### End of Stage 1 #### 
 
! ### Stage 2: Using the input savings from the stage 1 evalute super efficiency of the DMUs for all 
years ### 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
  



www.manaraa.com

 

296 
 

 !! Input constraints 
  !Dtt: Dt(t) 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage2_Dtt_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - 
DTT_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dtt1: Dt(t+1) 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - 
DTT1_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
   
  !Dt1t: Dt+1(t) 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - 
DT1T_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dt1t1: Dt+1(t+1) 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage2_Dt1t1_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - 
DT1T1_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
 
 !! Output Constraints 
  !Dtt: Dt(t) 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*PTI(dmu_year, j)>= PTI(dmu_year, 
k)*Dtt_Radial_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*STU(dmu_year, j)>= 
STU(dmu_year, k)*Dtt_Radial_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*LCI(dmu_year, j)>= LCI(dmu_year, 
k)*Dtt_Radial_Beta(dmu_year, k) !output LCI constraint 
   
  !Dtt1: Dt(t+1) 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*PTI(dmu_year, j)>= PTI(dmu_year+1, 
k)*Dtt1_Radial_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*STU(dmu_year, j)>= STU(dmu_year+1, 
k)*Dtt1_Radial_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*LCI(dmu_year, j)>= LCI(dmu_year+1, 
k)*Dtt1_Radial_Beta(dmu_year, k) !output LCI constraint 
   
  !Dt1t: Dt+1(t) 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*PTI(dmu_year+1, j)>= PTI(dmu_year, 
k)*Dt1t_Radial_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*STU(dmu_year+1, j)>= STU(dmu_year, 
k)*Dt1t_Radial_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*LCI(dmu_year+1, j)>= LCI(dmu_year, 
k)*Dt1t_Radial_Beta(dmu_year, k) !output LCI constraint 
   
  !Dt1t1: Dt+1(t+1) 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*PTI(dmu_year+1, j)>= 
PTI(dmu_year+1, k)*Dt1t1_Radial_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*STU(dmu_year+1, j)>= 
STU(dmu_year+1, k)*Dt1t1_Radial_Beta(dmu_year, k) !output STU constraint 
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  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*LCI(dmu_year+1, j)>= 
LCI(dmu_year+1, k)*Dt1t1_Radial_Beta(dmu_year, k) !output LCI constraint 
  
 end-do ! evalute all DMUs  
  
end-do ! Stage 2 DEA loop, evaluate all years (from start year to end year) 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
  Dtt_Radial_Beta(dmu_year, k) <= 1000 
   
  Dtt1_Radial_Beta(dmu_year, k) <= 1000 
   
  Dt1t_Radial_Beta(dmu_year, k) <= 1000 
   
  Dt1t1_Radial_Beta(dmu_year, k) <= 1000 
 end-do 
end-do  
 
 
 
maximize (sum (k in DMU, dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year 
<= END_YEAR) 
(Dtt_Radial_Beta(dmu_year, k)+ Dtt1_Radial_Beta(dmu_year, k)+Dt1t_Radial_Beta(dmu_year, 
k)+Dt1t1_Radial_Beta(dmu_year, k) )) 
 
! Save beta to the static variables for the post evalution 
! if beta = 1000 Type 1 (infinitive case) -> 1 
! if beta = 0 Type 2 (bounded to zero case) -> (1/ the output) of the evaluted DMU 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   !Dtt: Dt(t) 
   DTT_RADIAL_BETA_VALUE(dmu_year, k):= getsol(Dtt_Radial_Beta(dmu_year,k)) 
   !Dtt1: Dt(t+1) 
   DTT1_RADIAL_BETA_VALUE(dmu_year, k):= getsol(Dtt1_Radial_Beta(dmu_year,k)) 
   !Dt1t: Dt+1(t) 
   DT1T_RADIAL_BETA_VALUE(dmu_year, k):= getsol(Dt1t_Radial_Beta(dmu_year,k)) 
   !Dt1t1: Dt+1(t+1) 
   DT1T1_RADIAL_BETA_VALUE(dmu_year, k):= getsol(Dt1t1_Radial_Beta(dmu_year,k)) 
  end-do 
end-do 
 
!!zero-efficinecy is replaced by the average of the non-radial efficiencies 
! Average of non zero non-radial efficiencies 
!DTT_RADIAL_BETA_VALUE(1991, 23):= 0.59 
!DT1T_RADIAL_BETA_VALUE(1991, 23):= 1.75 
!DTT_RADIAL_BETA_VALUE(1996, 29):= 0.33 
!DT1T1_RADIAL_BETA_VALUE(1995, 29):= 0.33 
 
! Min of non zero non-radial efficiencies 
DTT_RADIAL_BETA_VALUE(1991, 23):= 0.37 
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DT1T_RADIAL_BETA_VALUE(1991, 23):= 0.08 
DTT_RADIAL_BETA_VALUE(1996, 29):= 0.29 
DT1T1_RADIAL_BETA_VALUE(1995, 29):= 0.29 
 
 
! Calculate final super efficiency 
! if there is a saving use Lee, et al.'s calculatoin 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   !Dtt: Dt(t) 
      if DTT_Num_Saving(dmu_year,k)>0 then  
        DTT_SE_phi(dmu_year,k) := ( EXP(dmu_year,k)+ 
DTT_EXP_STAGE1_SAVING(dmu_year, k)*EXP(dmu_year,k))/DTT_Num_Saving(dmu_year,k) + 
1/DTT_RADIAL_BETA_VALUE(dmu_year,k) 
        else DTT_SE_phi(dmu_year,k) := 1/DTT_RADIAL_BETA_VALUE(dmu_year,k) 
      end-if 
       
      !Dtt1: Dt(t+1) 
      if DTT1_Num_Saving(dmu_year,k)>0 then  
        DTT1_SE_phi(dmu_year,k) := ( EXP(dmu_year+1,k)+ 
DTT1_EXP_STAGE1_SAVING(dmu_year, 
k)*EXP(dmu_year+1,k))/DTT1_Num_Saving(dmu_year,k) + 
1/DTT1_RADIAL_BETA_VALUE(dmu_year,k) 
        else DTT1_SE_phi(dmu_year,k) := 1/DTT1_RADIAL_BETA_VALUE(dmu_year,k) 
      end-if 
      !Dt1t: Dt+1(t) 
      if DT1T_Num_Saving(dmu_year,k)>0 then  
        DT1T_SE_phi(dmu_year,k) := ( EXP(dmu_year,k)+ 
DT1T_EXP_STAGE1_SAVING(dmu_year, k)*EXP(dmu_year,k))/DT1T_Num_Saving(dmu_year,k) 
+ 1/DT1T_RADIAL_BETA_VALUE(dmu_year,k) 
        else DT1T_SE_phi(dmu_year,k) := 1/DT1T_RADIAL_BETA_VALUE(dmu_year,k) 
      end-if 
      !Dt1t1: Dt+1(t+1) 
      if DT1T1_Num_Saving(dmu_year,k)>0 then  
        DT1T1_SE_phi(dmu_year,k) := ( EXP(dmu_year+1,k)+ 
DT1T1_EXP_STAGE1_SAVING(dmu_year, 
k)*EXP(dmu_year+1,k))/DT1T1_Num_Saving(dmu_year,k) + 
1/DT1T1_RADIAL_BETA_VALUE(dmu_year,k) 
        else DT1T1_SE_phi(dmu_year,k) := 
1/DT1T1_RADIAL_BETA_VALUE(dmu_year,k) 
      end-if 
   
  end-do 
end-do 
 
 
!Final Modifed Super Efficiency 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 forall(k in DMU) do 
  DTT_SE(dmu_year,k) := DTT_SE_phi(dmu_year,k) 
  DTT1_SE(dmu_year,k) := DTT1_SE_phi(dmu_year,k) 
  DT1T_SE(dmu_year,k) := DT1T_SE_phi(dmu_year,k) 
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  DT1T1_SE(dmu_year,k) :=DT1T1_SE_phi(dmu_year,k) 
 end-do 
end-do 
 
! Malmquist Index 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 forall(k in DMU) do 
  EC(dmu_year,k) := DT1T1_SE(dmu_year,k) / DTT_SE(dmu_year,k) 
  TC(dmu_year,k) := sqrt ( (DTT1_SE(dmu_year,k) / DT1T1_SE(dmu_year,k)) * 
(DTT_SE(dmu_year,k) / DT1T_SE(dmu_year,k)) ) 
  MI(dmu_year,k) := EC(dmu_year,k)*TC(dmu_year,k) 
 end-do 
end-do 
 
 
!Print Beta 
writeln("") 
writeln("Beta Table") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Beta") 
writeln("                                              Dtt_Beta Dtt1_Beta Dt1t_Beta Dt1t1_Beta") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) 
do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t",  
   getsol(Dtt_Radial_Beta(dmu_year,k)),"\t",getsol(Dtt1_Radial_Beta(dmu_year,k)),"\t", 
   getsol(Dt1t_Radial_Beta(dmu_year,k)),"\t",getsol(Dt1t1_Radial_Beta(dmu_year,k)) )  
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
 
!Print Lambda 
writeln("") 
writeln("Lambda Table: DMUk = Ohio U.(23) 1991 Dtt") 
writeln("=========================================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Lambda") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | 1991 <= dmu_year AND dmu_year <= 1991) do 
  forall(k in DMU| k = 23) do  
   forall (j in DMU) do 
    writeln(ID(dmu_year,j), "\t",NAMES(dmu_year,j),"\t", dmu_year,"\t",  
    getsol(Stage2_Dtt_Lambda(dmu_year,j,k)))  
   end-do 
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
writeln("") 
writeln("Lambda Table: DMUk = Ohio U.(23) 1991 Dt1t") 
writeln("=========================================") 
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writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Lambda") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | 1991 <= dmu_year AND dmu_year <= 1991) do 
  forall(k in DMU| k = 23) do  
   forall (j in DMU) do 
    writeln(ID(dmu_year,j), "\t",NAMES(dmu_year,j),"\t", dmu_year,"\t",  
    getsol(Stage2_Dt1t_Lambda(dmu_year,j,k)))  
   end-do 
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
writeln("") 
writeln("Lambda Table: DMUk = Univ. of Akron(29) 1996 Dtt") 
writeln("=========================================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Lambda") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | 1996 <= dmu_year AND dmu_year <= 1996) do 
  forall(k in DMU| k = 29) do  
   forall (j in DMU) do 
    writeln(ID(dmu_year,j), "\t",NAMES(dmu_year,j),"\t", dmu_year,"\t",  
    getsol(Stage2_Dtt_Lambda(dmu_year,j,k)))  
   end-do 
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
 
 
!Print Modified SE 
writeln("") 
writeln("Modified SE Table") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Modified SE") 
writeln("                                              Dtt_SE Dtt1_SE Dt1t_SE Dt1t1_SE") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) 
do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t",  
  
 DTT_SE(dmu_year,k),"\t",DTT1_SE(dmu_year,k),"\t",DT1T_SE(dmu_year,k),"\t",DT1T1_SE(dm
u_year,k) )  
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
 
 
!Print Final MI 
writeln("") 
writeln("MI Table") 
writeln("=====================") 
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writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Malmquist Index") 
writeln("                                              EC   TC   MI") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) 
do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t",  
   EC(dmu_year,k),"\t",TC(dmu_year,k),"\t",MI(dmu_year,k) )  
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
 
end-model 

 

 

2. Non-radial VRS SE Malmquist Model 

model "Malmquist" 
uses "mmxprs"; !gain access to the Xpress-Optimizer solver 
 
! Dynamic Data 2-1: 47 U.S. research institutions licensing data 
! Dynamic Data 2-2: 46 U.S. research institutions licensing data EXCLUDING ID47. Woods Hole 
Oceanographic Inst. 
! Dynamic Data 2-3: Coefficients has been recalculated by adding lag0, 46 Inst., excluding ID47 
! ID47. Woods Hole Oceanographic Inst. has so many zero data point result in unrealistic result in DEA 
and Malmquist 
 
! Time-Lag Factored Data using 1st distance lags (coefficients from regression without transform functions) 
! Factored Data: EXP from  1991 to 2002,PTI , STU, LCI from 1992 to 2007 
! Data set from 1991 to 1999 
! one input and three outputs model 
 
parameters 
 DATAFILE = "DYNAMIC_DATA3.txt" 
  
 end-parameters 
 
writeln ("DATAFILE = ",DATAFILE)  
 
 
declarations 
   ALLYEAR = 1991..1999 ! DATA FROM Year 1991-1999 
   DMU = 1..46 ! Set of Decision Making Units, hard coded 
   ID: array (ALLYEAR, DMU) of integer   ! Set of DMU ID 
   YEAR: array (ALLYEAR, DMU) of integer ! load Year 
   NAMES: array (ALLYEAR, DMU) of string   ! Set of DMU Names 
   EXP, PTI, STU, LCI:  array (ALLYEAR, DMU) of real   ! Set of input and output variables 
    



www.manaraa.com

 

302 
 

   START_YEAR = 1991    ! First Year of Malmquist Index (CHANGE FROM 
MFRONTYEAR-1 TO MFRONYEAR) 
   END_YEAR = 1998    ! Last Year of Malmquist Index (CHNAGE FROM MTOYEAR - 1 TO 
MTOYEAR) 
    
   M = 20 
           
!   Dtt_TC: array(ALLYEAR, DMU) of real ! Technical Change of Malmquist 
!   Dtt_TC1: array(ALLYEAR, DMU) of real ! Dt(t+1)/Dt+1(t+1) in TC 
!   Dtt_TC2: array(ALLYEAR, DMU) of real ! Dt(t)/Dt+1(t) in TC 
!   Dtt_EC: array(ALLYEAR, DMU) of real ! Efficinecy Change of Malmquist 
!   Dtt_MALMQUIST: array(ALLYEAR, DMU) of real ! Malmquist indices of all 47 DMUs 
 
! Definition of decision variables       
   Dtt_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   Dtt1_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   Dt1t_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   Dt1t1_Exp_Saving: array (ALLYEAR, DMU) of mpvar 
   !Dtt: Dt(t)     
   Dtt_PTI_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dtt_STU_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dtt_LCI_Beta:  array (ALLYEAR, DMU) of mpvar     
   !Dtt1: Dt(t+1) 
   Dtt1_PTI_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dtt1_STU_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dtt1_LCI_Beta:  array (ALLYEAR, DMU) of mpvar     
   !Dt1t: Dt+1(t) 
   Dt1t_PTI_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dt1t_STU_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dt1t_LCI_Beta:  array (ALLYEAR, DMU) of mpvar     
   !Dt1t1: Dt+1(t+1)    
   Dt1t1_PTI_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dt1t1_STU_Beta:  array (ALLYEAR, DMU) of mpvar 
   Dt1t1_LCI_Beta:  array (ALLYEAR, DMU) of mpvar     
 
 
   Stage1_Dtt_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
   Stage1_Dtt1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
   Stage1_Dt1t_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
   Stage1_Dt1t1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda 
 
 
   Stage2_Dtt_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
   Stage2_Dtt1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
   Stage2_Dt1t_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
   Stage2_Dt1t1_Lambda:  array (ALLYEAR, DMU,DMU)  of mpvar ! Array of lambda    
 
! Variables to store input saving from the stage 1 
   DTT_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
   DTT1_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
   DT1T_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
   DT1T1_EXP_STAGE1_SAVING: array (ALLYEAR, DMU) of real 
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! Variables to store beta from the stage 2 
   !Dtt: Dt(t) 
   DTT_PTI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DTT_STU_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DTT_LCI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   !Dtt1: Dt(t+1) 
   DTT1_PTI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DTT1_STU_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DTT1_LCI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   !Dt1t: Dt+1(t) 
   DT1T_PTI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DT1T_STU_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DT1T_LCI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   !Dt1t1: Dt+1(t+1) 
   DT1T1_PTI_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DT1T1_STU_BETA_VALUE: array (ALLYEAR, DMU) of real 
   DT1T1_LCI_BETA_VALUE: array (ALLYEAR, DMU) of real 
 
! Variables to store average beta of each output 
   DTT_BETA_AVERAGE: array (ALLYEAR, DMU) of real 
   DTT1_BETA_AVERAGE: array (ALLYEAR, DMU) of real 
   DT1T_BETA_AVERAGE: array (ALLYEAR, DMU) of real 
   DT1T1_BETA_AVERAGE: array (ALLYEAR, DMU) of real 
  
    
end-declarations 
 
 
initializations from DATAFILE 
  ID NAMES YEAR EXP PTI STU LCI   ! Reads the data from the above file 
end-initializations 
 
! ### Stage 1: Calculate input saving. If it is not zero, the DMU is an infeasible case. ###  
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
  !Dtt: Dt(t) 
  sum (j in DMU | j<>k) Stage1_Dtt_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage1_Dtt_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage1_Dtt_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - Dtt_Exp_Saving 
(dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dtt1: Dt(t+1) 
  sum (j in DMU) Stage1_Dtt1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage1_Dtt1_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - Dtt1_Exp_Saving 
(dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
   
  !Dt1t: Dt+1(t) 
  sum (j in DMU) Stage1_Dt1t_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage1_Dt1t_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - Dt1t_Exp_Saving 
(dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
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  !Dt1t1: Dt+1(t+1) 
  sum (j in DMU | j<>k) Stage1_Dt1t1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage1_Dt1t1_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage1_Dt1t1_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - 
Dt1t1_Exp_Saving (dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
 
 end-do ! evalute all DMUs  
  
end-do ! Stage1 DEA loop, evaluate all years (from start year to end year) 
 
minimize (sum (k in DMU, dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= 
END_YEAR)  
(Dtt_Exp_Saving (dmu_year, k)+ Dtt1_Exp_Saving (dmu_year, k)+ Dt1t_Exp_Saving (dmu_year, k)+ 
Dt1t1_Exp_Saving (dmu_year, k))) !object function: minimize input saving 
 
 
! Print input saving table 
writeln("") 
writeln("Input Saving Table") 
writeln("=====================") 
writeln("ID", " ","INST NAME","        ", "YEAR"," ", "INPUT SAVING") 
writeln("                                              Dtt   Dtt1   Dt1t   Dt1t1") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t",getsol(Dtt_Exp_Saving 
(dmu_year, k)),"\t",getsol(Dtt1_Exp_Saving (dmu_year, k)),"\t",getsol(Dt1t_Exp_Saving (dmu_year, 
k)),"\t",getsol(Dt1t1_Exp_Saving (dmu_year, k)) )   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
! Store input savings to the variables for the stage2 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 forall(k in DMU) do  
  DTT_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dtt_Exp_Saving (dmu_year, k)) 
  DTT1_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dtt1_Exp_Saving (dmu_year, k)) 
  DT1T_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dt1t_Exp_Saving (dmu_year, k)) 
  DT1T1_EXP_STAGE1_SAVING(dmu_year, k) := getsol(Dt1t1_Exp_Saving (dmu_year, k)) 
 end-do 
end-do 
 
! #### End of Stage 1 #### 
 
! ### Stage 2: Using the input savings from the stage 1 evalute super efficiency of the DMUs for all years 
### 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
  
 !! Input constraints 
  !Dtt: Dt(t) 
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  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage2_Dtt_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - 
DTT_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dtt1: Dt(t+1) 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*EXP(dmu_year, j) - 
DTT1_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
   
  !Dt1t: Dt+1(t) 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - 
DT1T_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year,k) !input, EXP, constraint 
   
  !Dt1t1: Dt+1(t+1) 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)=1   ! Variable returns to Scale 
  Stage2_Dt1t1_Lambda(dmu_year,k,k)=0 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*EXP(dmu_year+1, j) - 
DT1T1_EXP_STAGE1_SAVING (dmu_year, k)<= EXP(dmu_year+1,k) !input, EXP, constraint 
 
 !! Output Constraints 
  !Dtt: Dt(t) 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*PTI(dmu_year, j)>= PTI(dmu_year, 
k)*Dtt_PTI_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*STU(dmu_year, j)>= STU(dmu_year, 
k)*Dtt_STU_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU | j<>k) Stage2_Dtt_Lambda(dmu_year,j,k)*LCI(dmu_year, j)>= LCI(dmu_year, 
k)*Dtt_LCI_Beta(dmu_year, k) !output LCI constraint 
   
  !Dtt1: Dt(t+1) 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*PTI(dmu_year, j)>= PTI(dmu_year+1, 
k)*Dtt1_PTI_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*STU(dmu_year, j)>= STU(dmu_year+1, 
k)*Dtt1_STU_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU) Stage2_Dtt1_Lambda(dmu_year,j,k)*LCI(dmu_year, j)>= LCI(dmu_year+1, 
k)*Dtt1_LCI_Beta(dmu_year, k) !output LCI constraint 
   
  !Dt1t: Dt+1(t) 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*PTI(dmu_year+1, j)>= PTI(dmu_year, 
k)*Dt1t_PTI_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*STU(dmu_year+1, j)>= STU(dmu_year, 
k)*Dt1t_STU_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU) Stage2_Dt1t_Lambda(dmu_year,j,k)*LCI(dmu_year+1, j)>= LCI(dmu_year, 
k)*Dt1t_LCI_Beta(dmu_year, k) !output LCI constraint 
   
  !Dt1t1: Dt+1(t+1) 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*PTI(dmu_year+1, j)>= 
PTI(dmu_year+1, k)*Dt1t1_PTI_Beta(dmu_year, k) !output PTI constraint 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*STU(dmu_year+1, j)>= 
STU(dmu_year+1, k)*Dt1t1_STU_Beta(dmu_year, k) !output STU constraint 
  sum (j in DMU | j<>k) Stage2_Dt1t1_Lambda(dmu_year,j,k)*LCI(dmu_year+1, j)>= 
LCI(dmu_year+1, k)*Dt1t1_LCI_Beta(dmu_year, k) !output LCI constraint 
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 end-do ! evalute all DMUs  
  
end-do ! Stage 2 DEA loop, evaluate all years (from start year to end year) 
 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 
 forall(k in DMU) do 
  Dtt_PTI_Beta(dmu_year, k) <= M 
  Dtt_STU_Beta(dmu_year, k) <= M 
  Dtt_LCI_Beta(dmu_year, k) <= M 
   
  Dtt1_PTI_Beta(dmu_year, k) <= M 
  Dtt1_STU_Beta(dmu_year, k) <= M 
  Dtt1_LCI_Beta(dmu_year, k) <= M 
   
  Dt1t_PTI_Beta(dmu_year, k) <= M 
  Dt1t_STU_Beta(dmu_year, k) <= M 
  Dt1t_LCI_Beta(dmu_year, k) <= M 
   
  Dt1t1_PTI_Beta(dmu_year, k) <= M 
  Dt1t1_STU_Beta(dmu_year, k) <= M 
  Dt1t1_LCI_Beta(dmu_year, k) <= M 
 end-do 
end-do  
 
 
 
maximize (sum (k in DMU, dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= 
END_YEAR)  
(Dtt_PTI_Beta(dmu_year, k)+ Dtt1_PTI_Beta(dmu_year, k)+Dt1t_PTI_Beta(dmu_year, 
k)+Dt1t1_PTI_Beta(dmu_year, k)+ 
Dtt_STU_Beta(dmu_year, k)+ Dtt1_STU_Beta(dmu_year, k)+Dt1t_STU_Beta(dmu_year, 
k)+Dt1t1_STU_Beta(dmu_year, k)+ 
Dtt_LCI_Beta(dmu_year, k)+ Dtt1_LCI_Beta(dmu_year, k)+Dt1t_LCI_Beta(dmu_year, 
k)+Dt1t1_LCI_Beta(dmu_year, k))) 
 
 
! Save beta to the static variables for the post evalution 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 forall(k in DMU) do 
    !Dtt: Dt(t) 
      if getsol(Dtt_PTI_Beta(dmu_year,k))=1000 or getsol(Dtt_PTI_Beta(dmu_year,k))=0 then 
DTT_PTI_BETA_VALUE(dmu_year,k):= 1  
      else DTT_PTI_BETA_VALUE(dmu_year,k):= getsol(Dtt_PTI_Beta(dmu_year,k))  
      end-if 
       
      if getsol(Dtt_STU_Beta(dmu_year,k))=1000 or getsol(Dtt_STU_Beta(dmu_year,k))= 0 then 
DTT_STU_BETA_VALUE(dmu_year,k):= 1  
      else DTT_STU_BETA_VALUE(dmu_year,k):= getsol(Dtt_STU_Beta(dmu_year,k))  
      end-if 
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      if getsol(Dtt_LCI_Beta(dmu_year,k))=1000 or getsol(Dtt_LCI_Beta(dmu_year,k))= 0 then 
DTT_LCI_BETA_VALUE(dmu_year,k):= 1  
      else DTT_LCI_BETA_VALUE(dmu_year,k):= getsol(Dtt_LCI_Beta(dmu_year,k)) 
      end-if 
      
     !Dtt1: Dt(t+1) 
     if getsol(Dtt1_PTI_Beta(dmu_year,k))=1000 or getsol(Dtt1_PTI_Beta(dmu_year,k))= 0 then 
DTT1_PTI_BETA_VALUE(dmu_year,k):= 1  
     else DTT1_PTI_BETA_VALUE(dmu_year,k):= getsol(Dtt1_PTI_Beta(dmu_year,k))  
     end-if 
      
     if getsol(Dtt1_STU_Beta(dmu_year,k))=1000 or getsol(Dtt1_STU_Beta(dmu_year,k))= 0 then 
DTT1_STU_BETA_VALUE(dmu_year,k):= 1  
     else DTT1_STU_BETA_VALUE(dmu_year,k):= getsol(Dtt1_STU_Beta(dmu_year,k))  
     end-if 
      
     if getsol(Dtt1_LCI_Beta(dmu_year,k))=1000 or getsol(Dtt1_LCI_Beta(dmu_year,k))= 0 then 
DTT1_LCI_BETA_VALUE(dmu_year,k):=  1  
     else DTT1_LCI_BETA_VALUE(dmu_year,k):= getsol(Dtt1_LCI_Beta(dmu_year,k))  
     end-if 
      
     !Dt1t: Dt+1(t) 
     if getsol(Dt1t_PTI_Beta(dmu_year,k))=1000 or getsol(Dt1t_PTI_Beta(dmu_year,k))= 0 then 
DT1T_PTI_BETA_VALUE(dmu_year,k):= 1  
     else DT1T_PTI_BETA_VALUE(dmu_year,k):= getsol(Dt1t_PTI_Beta(dmu_year,k))  
     end-if 
      
     if getsol(Dt1t_STU_Beta(dmu_year,k))=1000 or getsol(Dt1t_STU_Beta(dmu_year,k))= 0 then 
DT1T_STU_BETA_VALUE(dmu_year,k):= 1  
     else DT1T_STU_BETA_VALUE(dmu_year,k):= getsol(Dt1t_STU_Beta(dmu_year,k))  
     end-if 
      
     if getsol(Dt1t_LCI_Beta(dmu_year,k))=1000 or getsol(Dt1t_LCI_Beta(dmu_year,k))= 0 then 
DT1T_LCI_BETA_VALUE(dmu_year,k):= 1  
     else DT1T_LCI_BETA_VALUE(dmu_year,k):=getsol(Dt1t_LCI_Beta(dmu_year,k))  
     end-if 
    
    !Dt1t1: Dt+1(t+1) 
     if getsol(Dt1t1_PTI_Beta(dmu_year,k))=1000 or getsol(Dt1t1_PTI_Beta(dmu_year,k))= 0 then 
DT1T1_PTI_BETA_VALUE(dmu_year,k):= 1  
     else DT1T1_PTI_BETA_VALUE(dmu_year,k):= getsol(Dt1t1_PTI_Beta(dmu_year,k))  
     end-if 
      
     if getsol(Dt1t1_STU_Beta(dmu_year,k))=1000 or getsol(Dt1t1_STU_Beta(dmu_year,k))= 0 then 
DT1T1_STU_BETA_VALUE(dmu_year,k):= 1 
     else DT1T1_STU_BETA_VALUE(dmu_year,k):= getsol(Dt1t1_STU_Beta(dmu_year,k))  
     end-if 
      
     if getsol(Dt1t1_LCI_Beta(dmu_year,k))=1000 or getsol(Dt1t1_LCI_Beta(dmu_year,k))= 0 then 
DT1T1_LCI_BETA_VALUE(dmu_year,k):=  1  
     else DT1T1_LCI_BETA_VALUE(dmu_year,k):= getsol(Dt1t1_LCI_Beta(dmu_year,k))  
     end-if 
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 end-do 
end-do 
 
! Calcualte Average Beta of the Three Ouptut Betas 
forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
 forall(k in DMU) do 
     DTT_BETA_AVERAGE(dmu_year,k):= 
(DTT_PTI_BETA_VALUE(dmu_year,k)+DTT_STU_BETA_VALUE(dmu_year,k)+DTT_LCI_BETA_V
ALUE(dmu_year,k))/3 
     DTT1_BETA_AVERAGE(dmu_year,k):= 
(DTT1_PTI_BETA_VALUE(dmu_year,k)+DTT1_STU_BETA_VALUE(dmu_year,k)+DTT1_LCI_BET
A_VALUE(dmu_year,k))/3 
     DT1T_BETA_AVERAGE(dmu_year,k):= 
(DT1T_PTI_BETA_VALUE(dmu_year,k)+DT1T_STU_BETA_VALUE(dmu_year,k)+DT1T_LCI_BET
A_VALUE(dmu_year,k))/3 
     DT1T1_BETA_AVERAGE(dmu_year,k):= 
(DT1T1_PTI_BETA_VALUE(dmu_year,k)+DT1T1_STU_BETA_VALUE(dmu_year,k)+DT1T1_LCI_B
ETA_VALUE(dmu_year,k))/3 
 end-do 
end-do 
 
 
 
!Print Beta 
writeln("") 
writeln("Beta Table: Dtt") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Beta") 
writeln("                                              Dtt_PTI_Beta Dtt_STU_Beta Dtt_LCI_Beta") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t", 
getsol(Dtt_PTI_Beta(dmu_year,k)),"\t",getsol(Dtt_STU_Beta(dmu_year,k)),"\t",getsol(Dtt_LCI_Beta(dmu
_year,k)))   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
writeln("") 
writeln("Beta Table: Dtt1") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Beta") 
writeln("                                              Dtt1_PTI_Beta Dtt1_STU_Beta Dtt1_LCI_Beta") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t", 
getsol(Dtt1_PTI_Beta(dmu_year,k)),"\t",getsol(Dtt1_STU_Beta(dmu_year,k)),"\t",getsol(Dtt1_LCI_Beta(d
mu_year,k)))   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
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writeln("") 
writeln("Beta Table: Dt1t") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Beta") 
writeln("                                              Dt1t_PTI_Beta Dt1t_STU_Beta Dt1t_LCI_Beta") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t", 
getsol(Dt1t_PTI_Beta(dmu_year,k)),"\t",getsol(Dt1t_STU_Beta(dmu_year,k)),"\t",getsol(Dt1t_LCI_Beta(d
mu_year,k)))   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
writeln("") 
writeln("Beta Table: Dt1t1") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Beta") 
writeln("                                              Dt1t1_PTI_Beta Dt1t1_STU_Beta Dt1t1_LCI_Beta") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t", 
getsol(Dt1t1_PTI_Beta(dmu_year,k)),"\t",getsol(Dt1t1_STU_Beta(dmu_year,k)),"\t",getsol(Dt1t1_LCI_Be
ta(dmu_year,k)))   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
writeln("") 
writeln("Average Beta Table (after output beta transformed: zero beta ->1, unbounded beta ->1)") 
writeln("=====================") 
writeln("ID", " ","INST NAME","            ", "YEAR","    ", "Beta") 
writeln("                                             Dtt_beta  Dtt1_beta  Dt1t_beta Dt1t1_beta") 
 writeln("-------------------------------------------------------") 
 forall (dmu_year in ALLYEAR | START_YEAR <= dmu_year AND dmu_year <= END_YEAR) do 
  forall(k in DMU) do  
   writeln(ID(dmu_year,k), "\t",NAMES(dmu_year,k),"\t", dmu_year,"\t", 
DTT_BETA_AVERAGE(dmu_year,k),"\t",DTT1_BETA_AVERAGE(dmu_year,k),"\t",DT1T_BETA_A
VERAGE(dmu_year,k),"\t",DT1T1_BETA_AVERAGE(dmu_year,k))   
  end-do 
 end-do 
writeln("-------------------------------------------------------") 
 
 
end-model 
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13Appendix D. Modified Super-Efficiency Score of the 46 Institutions during the period 

Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions 
 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

1 Baylor College of Medicine 1991 0.10 0.48 0.08 0.27 

2 Brigham & Women's Hospital, Inc. 1991 0.56 1.20 0.32 0.61 

3 Brigham Young Univ. 1991 2.09 1.08 2.50 1.16 

4 California Institute of Tech. 1991 0.87 1.97 0.49 1.52 

5 Case Western Reserve Univ. 1991 0.35 0.31 0.18 0.15 

6 City of Hope National Medic 1991 5.17 1.49 0.99 2.47 

7 Clemson Univ. 1991 0.54 0.74 0.44 0.40 

8 Colorado State Univ. 1991 0.42 0.34 0.22 0.19 

9 Dartmouth College 1991 0.21 0.55 0.12 0.34 

10 Florida State Univ. 1991 0.32 0.99 0.22 0.96 

11 Fred Hutchinson Cancer Res. 1991 0.21 0.22 0.12 0.11 

12 Georgia Inst. of Technology 1991 0.44 0.73 0.24 0.39 

13 Harvard Univ. 1991 0.41 0.89 0.29 0.60 

14 Indiana Univ. (ARTI) 1991 0.18 0.29 0.09 0.14 

15 Johns Hopkins Univ. 1991 0.31 0.74 0.24 0.35 

16 Massachusetts Inst. of Tech 1991 3.33 2.16 0.76 2.79 

17 Mayo Foundation 1991 0.61 0.97 0.35 0.52 

18 Michigan State Univ. 1991 0.77 0.99 0.60 0.64 

19 National Jewish Center 1991 0.37 0.22 0.25 0.15 

20 New Jersey Institute of Tech. 1991 0.14 0.89 0.10 0.55 

21 Northwestern Univ. 1991 0.28 0.53 0.14 0.26 

22 Ohio State Univ. 1991 0.32 0.77 0.16 0.37 

23 Ohio Univ. 1991 3.01 3.27 1.56 5.11 

24 Oregon State Univ. 1991 0.13 0.24 0.07 0.13 

25 Penn State Univ. 1991 0.25 0.28 0.18 0.18 

26 Rutgers, The State Univ. 1991 0.48 0.90 0.28 0.45 

27 St. Jude Children's Researc 1991 0.34 0.10 0.21 0.06 

28 Tulane Univ. 1991 0.45 0.55 0.28 0.33 

29 Univ. of Akron 1991 2.11 1.42 1.11 0.97 

30 Univ. of Arizona 1991 0.16 0.34 0.10 0.16 

31 Univ. of Cincinnati 1991 0.56 0.59 0.34 0.34 

32 Univ. of Connecticut 1991 0.40 0.65 0.22 0.34 

33 Univ. of Dayton 1991 0.49 0.58 0.30 0.33 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 
 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

34 Univ. of Delaware 1991 0.45 0.61 0.32 0.34 

35 Univ. of Iowa Research Fdn. 1991 0.27 0.46 0.14 0.22 

36 Univ. of Maryland, College 1991 0.35 0.53 0.20 0.26 

37 Univ. of Michigan 1991 0.20 0.58 0.10 0.40 

38 Univ. of Minnesota 1991 0.45 1.08 0.32 0.51 

39 Univ. of Oregon 1991 0.70 0.70 0.42 0.39 

40 Univ. of Southern California 1991 0.36 0.57 0.23 0.32 

41 Univ. of Texas Southwestern 1991 0.41 0.84 0.23 0.42 

42 Univ. of Utah 1991 0.86 1.32 0.45 0.74 

43 Univ. of Virginia Patent Fdn. 1991 0.66 1.07 0.37 0.56 

44 Vanderbilt Univ. 1991 0.18 0.21 0.10 0.12 

45 Wake Forest Univ. 1991 0.40 0.59 0.24 0.34 

46 Washington Univ. 1991 0.41 0.53 0.34 0.26 

1 Baylor College of Medicine 1992 0.27 0.27 0.28 0.25 

2 Brigham & Women's Hospital, Inc. 1992 0.61 0.48 0.44 0.37 

3 Brigham Young Univ. 1992 1.16 72.50 0.60 17.66 

4 California Institute of Tech. 1992 1.52 1.44 1.15 1.57 

5 Case Western Reserve Univ. 1992 0.15 0.20 0.11 0.15 

6 City of Hope National Medic 1992 2.47 1.04 1.15 1.74 

7 Clemson Univ. 1992 0.40 0.20 0.32 0.17 

8 Colorado State Univ. 1992 0.19 0.11 0.19 0.12 

9 Dartmouth College 1992 0.34 0.25 0.32 0.17 

10 Florida State Univ. 1992 0.96 1.46 0.79 1.41 

11 Fred Hutchinson Cancer Res. 1992 0.11 0.35 0.08 0.27 

12 Georgia Inst. of Technology 1992 0.39 0.33 0.32 0.32 

13 Harvard Univ. 1992 0.60 0.47 0.50 0.43 

14 Indiana Univ. (ARTI) 1992 0.14 0.24 0.12 0.20 

15 Johns Hopkins Univ. 1992 0.35 0.47 0.34 0.47 

16 Massachusetts Inst. of Tech 1992 2.79 1.19 1.15 2.34 

17 Mayo Foundation 1992 0.52 0.29 0.40 0.26 

18 Michigan State Univ. 1992 0.64 0.85 0.56 0.86 

19 National Jewish Center 1992 0.15 0.51 0.13 0.21 

20 New Jersey Institute of Tech. 1992 0.55 1.65 0.46 0.61 

21 Northwestern Univ. 1992 0.26 0.54 0.20 0.38 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 
 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

22 Ohio State Univ. 1992 0.37 0.40 0.32 0.44 

23 Ohio Univ. 1992 5.11 0.85 2.35 0.46 

24 Oregon State Univ. 1992 0.13 0.29 0.10 0.21 

25 Penn State Univ. 1992 0.18 0.32 0.18 0.31 

26 Rutgers, The State Univ. 1992 0.45 0.49 0.38 0.44 

27 St. Jude Children's Researc 1992 0.06 0.27 0.06 0.21 

28 Tulane Univ. 1992 0.33 0.32 0.31 0.28 

29 Univ. of Akron 1992 0.97 1.32 0.77 1.47 

30 Univ. of Arizona 1992 0.16 0.14 0.15 0.15 

31 Univ. of Cincinnati 1992 0.34 0.41 0.27 0.33 

32 Univ. of Connecticut 1992 0.34 0.22 0.24 0.16 

33 Univ. of Dayton 1992 0.33 0.46 0.25 0.34 

34 Univ. of Delaware 1992 0.34 0.42 0.25 0.35 

35 Univ. of Iowa Research Fdn. 1992 0.22 0.25 0.19 0.22 

36 Univ. of Maryland, College 1992 0.26 0.38 0.19 0.30 

37 Univ. of Michigan 1992 0.40 0.47 0.34 0.39 

38 Univ. of Minnesota 1992 0.51 0.48 0.52 0.48 

39 Univ. of Oregon 1992 0.39 0.34 0.29 0.27 

40 Univ. of Southern California 1992 0.32 0.48 0.33 0.52 

41 Univ. of Texas Southwestern 1992 0.42 0.48 0.32 0.37 

42 Univ. of Utah 1992 0.74 0.57 0.76 0.44 

43 Univ. of Virginia Patent Fdn. 1992 0.56 0.47 0.63 0.47 

44 Vanderbilt Univ. 1992 0.12 0.31 0.13 0.22 

45 Wake Forest Univ. 1992 0.34 0.31 0.34 0.24 

46 Washington Univ. 1992 0.26 0.38 0.27 0.37 

1 Baylor College of Medicine 1993 0.25 0.36 0.25 0.36 

2 Brigham & Women's Hospital, Inc. 1993 0.37 0.31 0.46 0.39 

3 Brigham Young Univ. 1993 17.66 2.23 0.87 3.25 

4 California Institute of Tech. 1993 1.57 0.91 1.34 1.13 

5 Case Western Reserve Univ. 1993 0.15 0.18 0.19 0.23 

6 City of Hope National Medic 1993 1.74 0.73 1.51 0.97 

7 Clemson Univ. 1993 0.17 0.19 0.22 0.23 

8 Colorado State Univ. 1993 0.12 0.11 0.14 0.14 

9 Dartmouth College 1993 0.17 0.28 0.21 0.36 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 
 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

10 Florida State Univ. 1993 1.41 1.21 1.08 2.43 

11 Fred Hutchinson Cancer Res. 1993 0.27 0.17 0.34 0.22 

12 Georgia Inst. of Technology 1993 0.32 0.58 0.36 0.64 

13 Harvard Univ. 1993 0.43 0.50 0.41 0.48 

14 Indiana Univ. (ARTI) 1993 0.20 0.17 0.23 0.19 

15 Johns Hopkins Univ. 1993 0.47 0.60 0.43 0.57 

16 Massachusetts Inst. of Tech 1993 2.34 1.12 1.12 2.35 

17 Mayo Foundation 1993 0.26 0.31 0.30 0.36 

18 Michigan State Univ. 1993 0.86 0.82 0.92 0.88 

19 National Jewish Center 1993 0.21 0.22 0.21 0.23 

20 New Jersey Institute of Tech. 1993 0.61 0.88 0.37 0.51 

21 Northwestern Univ. 1993 0.38 0.40 0.51 0.49 

22 Ohio State Univ. 1993 0.44 0.30 0.49 0.33 

23 Ohio Univ. 1993 0.46 0.50 0.47 0.50 

24 Oregon State Univ. 1993 0.21 0.11 0.28 0.15 

25 Penn State Univ. 1993 0.31 0.30 0.34 0.28 

26 Rutgers, The State Univ. 1993 0.44 0.39 0.48 0.45 

27 St. Jude Children's Researc 1993 0.21 0.15 0.25 0.18 

28 Tulane Univ. 1993 0.28 0.23 0.36 0.27 

29 Univ. of Akron 1993 1.47 2.36 1.09 3.04 

30 Univ. of Arizona 1993 0.15 0.22 0.15 0.24 

31 Univ. of Cincinnati 1993 0.33 0.21 0.37 0.27 

32 Univ. of Connecticut 1993 0.16 0.12 0.20 0.16 

33 Univ. of Dayton 1993 0.34 0.29 0.42 0.36 

34 Univ. of Delaware 1993 0.35 0.18 0.31 0.22 

35 Univ. of Iowa Research Fdn. 1993 0.22 0.37 0.25 0.44 

36 Univ. of Maryland, College 1993 0.30 0.18 0.34 0.19 

37 Univ. of Michigan 1993 0.39 0.39 0.44 0.36 

38 Univ. of Minnesota 1993 0.48 0.48 0.52 0.49 

39 Univ. of Oregon 1993 0.27 0.22 0.27 0.23 

40 Univ. of Southern California 1993 0.52 0.42 0.57 0.46 

41 Univ. of Texas Southwestern 1993 0.37 0.38 0.47 0.45 

42 Univ. of Utah 1993 0.44 0.51 0.55 0.59 

43 Univ. of Virginia Patent Fdn. 1993 0.47 0.26 0.52 0.30 
 



www.manaraa.com

 

314 
 

 
Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 
 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

44 Vanderbilt Univ. 1993 0.22 0.20 0.29 0.26 

45 Wake Forest Univ. 1993 0.24 0.15 0.30 0.19 

46 Washington Univ. 1993 0.37 0.41 0.40 0.42 

1 Baylor College of Medicine 1994 0.36 0.24 0.41 0.19 

2 Brigham & Women's Hospital, Inc. 1994 0.39 0.50 0.31 0.37 

3 Brigham Young Univ. 1994 3.25 1.43 2.51 1.25 

4 California Institute of Tech. 1994 1.13 1.41 1.50 1.25 

5 Case Western Reserve Univ. 1994 0.23 0.25 0.18 0.31 

6 City of Hope National Medic 1994 0.97 1.02 0.59 0.62 

7 Clemson Univ. 1994 0.23 0.19 0.16 0.13 

8 Colorado State Univ. 1994 0.14 0.23 0.11 0.34 

9 Dartmouth College 1994 0.36 1.68 0.28 1.59 

10 Florida State Univ. 1994 2.43 1.18 0.95 1.02 

11 Fred Hutchinson Cancer Res. 1994 0.22 0.12 0.19 0.16 

12 Georgia Inst. of Technology 1994 0.64 0.69 0.90 0.99 

13 Harvard Univ. 1994 0.48 0.51 0.38 0.41 

14 Indiana Univ. (ARTI) 1994 0.19 0.23 0.24 0.32 

15 Johns Hopkins Univ. 1994 0.57 0.60 0.51 0.47 

16 Massachusetts Inst. of Tech 1994 2.35 1.27 1.34 2.21 

17 Mayo Foundation 1994 0.36 0.32 0.35 0.24 

18 Michigan State Univ. 1994 0.88 1.02 0.64 0.74 

19 National Jewish Center 1994 0.23 0.63 0.24 0.44 

20 New Jersey Institute of Tech. 1994 0.51 0.35 1.12 0.25 

21 Northwestern Univ. 1994 0.49 0.26 0.45 0.21 

22 Ohio State Univ. 1994 0.33 0.32 0.47 0.28 

23 Ohio Univ. 1994 0.50 0.59 0.32 0.39 

24 Oregon State Univ. 1994 0.15 0.12 0.15 0.09 

25 Penn State Univ. 1994 0.28 0.30 0.31 0.28 

26 Rutgers, The State Univ. 1994 0.45 0.46 0.53 0.35 

27 St. Jude Children's Researc 1994 0.18 0.25 0.12 0.18 

28 Tulane Univ. 1994 0.27 0.28 0.18 0.19 

29 Univ. of Akron 1994 3.04 2.32 0.71 4.78 

30 Univ. of Arizona 1994 0.24 0.16 0.33 0.23 

31 Univ. of Cincinnati 1994 0.27 0.39 0.25 0.42 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

32 Univ. of Connecticut 1994 0.16 0.35 0.17 0.28 

33 Univ. of Dayton 1994 0.36 0.31 0.27 0.32 

34 Univ. of Delaware 1994 0.22 0.22 0.16 0.28 

35 Univ. of Iowa Research Fdn. 1994 0.44 0.54 0.46 0.41 

36 Univ. of Maryland, College 1994 0.19 0.50 0.27 0.74 

37 Univ. of Michigan 1994 0.36 0.39 0.33 0.37 

38 Univ. of Minnesota 1994 0.49 0.64 0.65 0.52 

39 Univ. of Oregon 1994 0.23 0.61 0.33 0.45 

40 Univ. of Southern California 1994 0.46 0.37 0.64 0.53 

41 Univ. of Texas Southwestern 1994 0.45 0.49 0.34 0.35 

42 Univ. of Utah 1994 0.59 0.51 0.84 0.73 

43 Univ. of Virginia Patent Fdn. 1994 0.30 0.39 0.36 0.59 

44 Vanderbilt Univ. 1994 0.26 0.34 0.29 0.27 

45 Wake Forest Univ. 1994 0.19 0.34 0.13 0.26 

46 Washington Univ. 1994 0.42 0.48 0.34 0.41 

1 Baylor College of Medicine 1995 0.19 0.40 0.23 0.36 

2 Brigham & Women's Hospital, Inc. 1995 0.37 0.47 0.47 0.45 

3 Brigham Young Univ. 1995 1.25 1.53 2.34 1.93 

4 California Institute of Tech. 1995 1.25 1.42 1.32 1.67 

5 Case Western Reserve Univ. 1995 0.31 0.39 0.23 0.28 

6 City of Hope National Medic 1995 0.62 0.67 1.00 1.06 

7 Clemson Univ. 1995 0.13 0.21 0.17 0.28 

8 Colorado State Univ. 1995 0.34 0.29 0.24 0.21 

9 Dartmouth College 1995 1.59 0.25 1.80 0.18 

10 Florida State Univ. 1995 1.02 0.89 1.19 1.94 

11 Fred Hutchinson Cancer Res. 1995 0.16 0.11 0.12 0.13 

12 Georgia Inst. of Technology 1995 0.99 1.24 0.70 0.87 

13 Harvard Univ. 1995 0.41 0.50 0.44 0.48 

14 Indiana Univ. (ARTI) 1995 0.32 0.25 0.23 0.25 

15 Johns Hopkins Univ. 1995 0.47 0.49 0.42 0.43 

16 Massachusetts Inst. of Tech 1995 2.21 1.92 1.27 2.59 

17 Mayo Foundation 1995 0.24 0.38 0.30 0.46 

18 Michigan State Univ. 1995 0.74 0.76 0.95 0.99 

19 National Jewish Center 1995 0.44 0.26 0.58 0.27 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

20 New Jersey Institute of Tech. 1995 0.25 0.33 0.33 0.42 

21 Northwestern Univ. 1995 0.21 0.35 0.24 0.39 

22 Ohio State Univ. 1995 0.28 0.45 0.29 0.32 

23 Ohio Univ. 1995 0.39 0.23 0.54 0.32 

24 Oregon State Univ. 1995 0.09 0.07 0.11 0.09 

25 Penn State Univ. 1995 0.28 0.33 0.34 0.40 

26 Rutgers, The State Univ. 1995 0.35 0.44 0.43 0.51 

27 St. Jude Children's Researc 1995 0.18 0.20 0.23 0.25 

28 Tulane Univ. 1995 0.19 0.18 0.26 0.24 

29 Univ. of Akron 1995 4.78 0.71 2.15 4.07 

30 Univ. of Arizona 1995 0.23 0.26 0.17 0.21 

31 Univ. of Cincinnati 1995 0.42 0.49 0.39 0.51 

32 Univ. of Connecticut 1995 0.28 0.19 0.34 0.21 

33 Univ. of Dayton 1995 0.32 0.37 0.29 0.30 

34 Univ. of Delaware 1995 0.28 0.65 0.22 0.45 

35 Univ. of Iowa Research Fdn. 1995 0.41 0.34 0.51 0.38 

36 Univ. of Maryland, College 1995 0.74 0.53 0.53 0.38 

37 Univ. of Michigan 1995 0.37 0.68 0.44 0.57 

38 Univ. of Minnesota 1995 0.52 0.60 0.58 0.67 

39 Univ. of Oregon 1995 0.45 0.51 0.57 0.44 

40 Univ. of Southern California 1995 0.53 0.69 0.37 0.50 

41 Univ. of Texas Southwestern 1995 0.35 0.33 0.46 0.43 

42 Univ. of Utah 1995 0.73 0.78 0.52 0.63 

43 Univ. of Virginia Patent Fdn. 1995 0.59 0.89 0.43 0.64 

44 Vanderbilt Univ. 1995 0.27 0.31 0.32 0.30 

45 Wake Forest Univ. 1995 0.26 0.60 0.32 0.67 

46 Washington Univ. 1995 0.41 0.47 0.46 0.52 

1 Baylor College of Medicine 1996 0.36 0.29 0.32 0.29 

2 Brigham & Women's Hospital, Inc. 1996 0.45 0.49 0.33 0.38 

3 Brigham Young Univ. 1996 1.93 1.81 0.93 2.22 

4 California Institute of Tech. 1996 1.67 1.52 0.93 2.36 

5 Case Western Reserve Univ. 1996 0.28 0.35 0.20 0.24 

6 City of Hope National Medic 1996 1.06 1.50 0.73 1.75 

7 Clemson Univ. 1996 0.28 0.22 0.19 0.18 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

8 Colorado State Univ. 1996 0.21 0.15 0.15 0.10 

9 Dartmouth College 1996 0.18 0.26 0.14 0.20 

10 Florida State Univ. 1996 1.94 1.01 1.21 1.33 

11 Fred Hutchinson Cancer Res. 1996 0.13 0.22 0.09 0.15 

12 Georgia Inst. of Technology 1996 0.87 0.75 0.74 0.59 

13 Harvard Univ. 1996 0.48 0.52 0.60 0.61 

14 Indiana Univ. (ARTI) 1996 0.25 0.37 0.20 0.29 

15 Johns Hopkins Univ. 1996 0.43 0.55 0.49 0.62 

16 Massachusetts Inst. of Tech 1996 2.59 0.98 1.96 1.86 

17 Mayo Foundation 1996 0.46 0.50 0.44 0.42 

18 Michigan State Univ. 1996 0.99 1.11 0.87 0.96 

19 National Jewish Center 1996 0.27 0.39 0.23 0.28 

20 New Jersey Institute of Tech. 1996 0.42 0.27 0.34 0.20 

21 Northwestern Univ. 1996 0.39 0.44 0.29 0.35 

22 Ohio State Univ. 1996 0.32 0.36 0.28 0.31 

23 Ohio Univ. 1996 0.32 0.46 0.31 0.45 

24 Oregon State Univ. 1996 0.09 0.17 0.06 0.11 

25 Penn State Univ. 1996 0.40 0.42 0.39 0.40 

26 Rutgers, The State Univ. 1996 0.51 0.45 0.35 0.31 

27 St. Jude Children's Researc 1996 0.25 0.39 0.19 0.28 

28 Tulane Univ. 1996 0.24 0.36 0.17 0.29 

29 Univ. of Akron 1996 4.07 1.71 1.85 4.26 

30 Univ. of Arizona 1996 0.21 0.26 0.19 0.25 

31 Univ. of Cincinnati 1996 0.51 0.60 0.36 0.43 

32 Univ. of Connecticut 1996 0.21 0.26 0.14 0.18 

33 Univ. of Dayton 1996 0.30 0.33 0.21 0.24 

34 Univ. of Delaware 1996 0.45 0.32 0.35 0.22 

35 Univ. of Iowa Research Fdn. 1996 0.38 0.36 0.31 0.34 

36 Univ. of Maryland, College 1996 0.38 0.73 0.27 0.53 

37 Univ. of Michigan 1996 0.57 0.52 0.56 0.53 

38 Univ. of Minnesota 1996 0.67 0.64 0.68 0.71 

39 Univ. of Oregon 1996 0.44 0.34 0.32 0.27 

40 Univ. of Southern California 1996 0.50 0.55 0.45 0.50 

41 Univ. of Texas Southwestern 1996 0.43 0.65 0.35 0.47 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

42 Univ. of Utah 1996 0.63 0.60 0.44 0.41 

43 Univ. of Virginia Patent Fdn. 1996 0.64 0.76 0.52 0.55 

44 Vanderbilt Univ. 1996 0.30 0.51 0.20 0.41 

45 Wake Forest Univ. 1996 0.67 0.78 0.47 0.55 

46 Washington Univ. 1996 0.52 0.46 0.48 0.42 

1 Baylor College of Medicine 1997 0.29 0.31 0.26 0.28 

2 Brigham & Women's Hospital, Inc. 1997 0.38 0.35 0.29 0.25 

3 Brigham Young Univ. 1997 2.22 1.96 0.97 2.05 

4 California Institute of Tech. 1997 2.36 1.42 1.30 2.73 

5 Case Western Reserve Univ. 1997 0.24 0.31 0.24 0.30 

6 City of Hope National Medic 1997 1.75 1.36 0.85 3.16 

7 Clemson Univ. 1997 0.18 0.25 0.17 0.27 

8 Colorado State Univ. 1997 0.10 0.22 0.11 0.27 

9 Dartmouth College 1997 0.20 0.37 0.20 0.29 

10 Florida State Univ. 1997 1.33 0.49 0.99 0.45 

11 Fred Hutchinson Cancer Res. 1997 0.15 0.14 0.17 0.11 

12 Georgia Inst. of Technology 1997 0.59 0.52 0.72 0.63 

13 Harvard Univ. 1997 0.61 0.78 0.54 0.68 

14 Indiana Univ. (ARTI) 1997 0.29 0.26 0.23 0.21 

15 Johns Hopkins Univ. 1997 0.62 0.80 0.53 0.68 

16 Massachusetts Inst. of Tech 1997 1.86 1.18 1.08 2.03 

17 Mayo Foundation 1997 0.42 0.58 0.30 0.53 

18 Michigan State Univ. 1997 0.96 0.82 0.77 0.66 

19 National Jewish Center 1997 0.28 0.36 0.24 0.28 

20 New Jersey Institute of Tech. 1997 0.20 0.18 0.16 0.16 

21 Northwestern Univ. 1997 0.35 0.36 0.43 0.45 

22 Ohio State Univ. 1997 0.31 0.42 0.37 0.50 

23 Ohio Univ. 1997 0.45 0.43 0.35 0.33 

24 Oregon State Univ. 1997 0.11 0.08 0.09 0.06 

25 Penn State Univ. 1997 0.40 0.49 0.33 0.41 

26 Rutgers, The State Univ. 1997 0.31 0.39 0.24 0.30 

27 St. Jude Children's Researc 1997 0.28 0.18 0.22 0.14 

28 Tulane Univ. 1997 0.29 0.26 0.24 0.21 

29 Univ. of Akron 1997 4.26 2.83 0.87 2.95 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

30 Univ. of Arizona 1997 0.25 0.23 0.29 0.27 

31 Univ. of Cincinnati 1997 0.43 0.20 0.33 0.20 

32 Univ. of Connecticut 1997 0.18 0.27 0.21 0.21 

33 Univ. of Dayton 1997 0.24 0.20 0.20 0.16 

34 Univ. of Delaware 1997 0.22 0.16 0.19 0.12 

35 Univ. of Iowa Research Fdn. 1997 0.34 0.38 0.27 0.31 

36 Univ. of Maryland, College 1997 0.53 0.17 0.65 0.22 

37 Univ. of Michigan 1997 0.53 0.53 0.53 0.44 

38 Univ. of Minnesota 1997 0.71 0.88 0.65 0.84 

39 Univ. of Oregon 1997 0.27 0.20 0.24 0.15 

40 Univ. of Southern California 1997 0.50 0.45 0.59 0.53 

41 Univ. of Texas Southwestern 1997 0.47 0.38 0.35 0.30 

42 Univ. of Utah 1997 0.41 0.83 0.42 1.07 

43 Univ. of Virginia Patent Fdn. 1997 0.55 0.33 0.68 0.37 

44 Vanderbilt Univ. 1997 0.41 0.31 0.32 0.26 

45 Wake Forest Univ. 1997 0.55 0.46 0.46 0.35 

46 Washington Univ. 1997 0.42 0.55 0.34 0.43 

1 Baylor College of Medicine 1998 0.28 0.21 0.34 0.23 

2 Brigham & Women's Hospital, Inc. 1998 0.25 0.31 0.30 0.37 

3 Brigham Young Univ. 1998 2.05 0.80 1.85 1.88 

4 California Institute of Tech. 1998 2.73 1.14 1.33 3.15 

5 Case Western Reserve Univ. 1998 0.30 0.31 0.36 0.37 

6 City of Hope National Medic 1998 3.16 0.85 1.54 1.68 

7 Clemson Univ. 1998 0.27 0.19 0.30 0.23 

8 Colorado State Univ. 1998 0.27 0.36 0.29 0.38 

9 Dartmouth College 1998 0.29 0.21 0.26 0.19 

10 Florida State Univ. 1998 0.45 0.33 0.53 0.39 

11 Fred Hutchinson Cancer Res. 1998 0.11 0.06 0.10 0.08 

12 Georgia Inst. of Technology 1998 0.63 0.81 0.67 0.86 

13 Harvard Univ. 1998 0.68 0.56 0.72 0.59 

14 Indiana Univ. (ARTI) 1998 0.21 0.38 0.27 0.43 

15 Johns Hopkins Univ. 1998 0.68 0.64 0.67 0.63 

16 Massachusetts Inst. of Tech 1998 2.03 1.06 1.15 2.04 
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Table D1: Modified Super-Efficiency Score of the 46 U.S. Institutions (continued) 

 

DMU 
ID 

Institutions Year Dt(t) Dt(t+1) Dt+1(t) Dt+1(t+1) 

17 Mayo Foundation 1998 0.53 0.51 0.63 0.57 

18 Michigan State Univ. 1998 0.66 0.81 0.77 0.92 

19 National Jewish Center 1998 0.28 0.30 0.26 0.28 

20 New Jersey Institute of Tech. 1998 0.16 0.24 0.17 0.22 

21 Northwestern Univ. 1998 0.45 0.50 0.48 0.53 

22 Ohio State Univ. 1998 0.50 0.27 0.53 0.29 

23 Ohio Univ. 1998 0.33 0.40 0.33 0.45 

24 Oregon State Univ. 1998 0.06 0.16 0.07 0.17 

25 Penn State Univ. 1998 0.41 0.35 0.38 0.32 

26 Rutgers, The State Univ. 1998 0.30 0.27 0.31 0.29 

27 St. Jude Children's Researc 1998 0.14 0.10 0.14 0.10 

28 Tulane Univ. 1998 0.21 0.17 0.26 0.19 

29 Univ. of Akron 1998 2.95 1.78 1.23 4.76 

30 Univ. of Arizona 1998 0.27 0.18 0.29 0.19 

31 Univ. of Cincinnati 1998 0.20 0.14 0.23 0.12 

32 Univ. of Connecticut 1998 0.21 0.24 0.19 0.27 

33 Univ. of Dayton 1998 0.16 0.20 0.14 0.21 

34 Univ. of Delaware 1998 0.12 0.23 0.11 0.27 

35 Univ. of Iowa Research Fdn. 1998 0.31 0.31 0.39 0.35 

36 Univ. of Maryland, College 1998 0.22 0.58 0.23 0.61 

37 Univ. of Michigan 1998 0.44 0.56 0.45 0.53 

38 Univ. of Minnesota 1998 0.84 0.96 0.88 1.08 

39 Univ. of Oregon 1998 0.15 0.30 0.17 0.35 

40 Univ. of Southern California 1998 0.53 0.29 0.56 0.31 

41 Univ. of Texas Southwestern 1998 0.30 0.36 0.35 0.42 

42 Univ. of Utah 1998 1.07 0.97 1.06 1.19 

43 Univ. of Virginia Patent Fdn. 1998 0.37 0.23 0.41 0.27 

44 Vanderbilt Univ. 1998 0.26 0.21 0.32 0.26 

45 Wake Forest Univ. 1998 0.35 0.84 0.49 1.01 

46 Washington Univ. 1998 0.43 0.55 0.48 0.53 
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14Appendix E. Malmquist Indexes of the 46 Institutions during the Period 

Table E1: Malmquist Index Scores of the 46 Institutions 

 
DMU 

ID 
Institutions Year EC TC MI 

1 Baylor College of Medicine 1991 2.65 1.48 3.91 

2 
Brigham & Women's Hospital, 
Inc. 

1991 1.07 1.87 2.00 

3 Brigham Young Univ. 1991 0.56 0.88 0.49 

4 California Institute of Tech. 1991 1.75 1.52 2.66 

5 Case Western Reserve Univ. 1991 0.43 2.00 0.86 

6 City of Hope National Medic 1991 0.48 1.78 0.85 

7 Clemson Univ. 1991 0.74 1.50 1.11 

8 Colorado State Univ. 1991 0.44 1.85 0.82 

9 Dartmouth College 1991 1.64 1.68 2.75 

10 Florida State Univ. 1991 2.98 1.24 3.69 

11 Fred Hutchinson Cancer Res. 1991 0.52 1.91 0.99 

12 Georgia Inst. of Technology 1991 0.89 1.87 1.66 

13 Harvard Univ. 1991 1.47 1.46 2.14 

14 Indiana Univ. (ARTI) 1991 0.79 2.03 1.60 

15 Johns Hopkins Univ. 1991 1.10 1.68 1.85 

16 Massachusetts Inst. of Tech 1991 0.84 1.84 1.54 

17 Mayo Foundation 1991 0.85 1.81 1.54 

18 Michigan State Univ. 1991 0.82 1.42 1.17 

19 National Jewish Center 1991 0.41 1.48 0.61 

20 New Jersey Institute of Tech. 1991 3.88 1.54 5.98 

21 Northwestern Univ. 1991 0.92 2.06 1.89 

22 Ohio State Univ. 1991 1.14 2.09 2.39 

23 Ohio Univ. 1991 1.70 1.11 1.89 

24 Oregon State Univ. 1991 1.00 1.86 1.86 

25 Penn State Univ. 1991 0.73 1.48 1.07 

26 Rutgers, The State Univ. 1991 0.93 1.86 1.73 

27 St. Jude Children's Researc 1991 0.17 1.66 0.28 

28 Tulane Univ. 1991 0.73 1.66 1.20 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

29 Univ. of Akron 1991 0.46 1.66 0.77 

30 Univ. of Arizona 1991 1.02 1.77 1.82 

31 Univ. of Cincinnati 1991 0.60 1.69 1.02 

32 Univ. of Connecticut 1991 0.85 1.84 1.57 

33 Univ. of Dayton 1991 0.67 1.69 1.13 

34 Univ. of Delaware 1991 0.75 1.57 1.19 

35 Univ. of Iowa Research Fdn. 1991 0.83 1.99 1.65 

36 Univ. of Maryland, College 1991 0.73 1.88 1.37 

37 Univ. of Michigan 1991 1.97 1.77 3.48 

38 Univ. of Minnesota 1991 1.14 1.74 1.98 

39 Univ. of Oregon 1991 0.56 1.73 0.96 

40 Univ. of Southern California 1991 0.90 1.66 1.50 

41 Univ. of Texas Southwestern 1991 1.03 1.89 1.94 

42 Univ. of Utah 1991 0.86 1.84 1.58 

43 Univ. of Virginia Patent Fdn. 1991 0.85 1.84 1.56 

44 Vanderbilt Univ. 1991 0.66 1.81 1.19 

45 Wake Forest Univ. 1991 0.86 1.68 1.45 

46 Washington Univ. 1991 0.62 1.59 0.99 

1 Baylor College of Medicine 1992 0.93 1.02 0.95 

2 
Brigham & Women's Hospital, 
Inc. 

1992 0.61 1.34 0.82 

3 Brigham Young Univ. 1992 15.18 2.82 42.80 

4 California Institute of Tech. 1992 1.03 1.10 1.14 

5 Case Western Reserve Univ. 1992 1.02 1.35 1.38 

6 City of Hope National Medic 1992 0.71 1.13 0.80 

7 Clemson Univ. 1992 0.43 1.18 0.51 

8 Colorado State Univ. 1992 0.66 0.94 0.62 

9 Dartmouth College 1992 0.50 1.23 0.62 

10 Florida State Univ. 1992 1.48 1.12 1.66 

11 Fred Hutchinson Cancer Res. 1992 2.45 1.30 3.20 

12 Georgia Inst. of Technology 1992 0.83 1.11 0.93 

13 Harvard Univ. 1992 0.73 1.14 0.83 

14 Indiana Univ. (ARTI) 1992 1.40 1.17 1.64 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

15 Johns Hopkins Univ. 1992 1.34 1.01 1.35 

16 Massachusetts Inst. of Tech 1992 0.84 1.11 0.93 

17 Mayo Foundation 1992 0.50 1.20 0.59 

18 Michigan State Univ. 1992 1.35 1.06 1.43 

19 National Jewish Center 1992 1.38 1.72 2.38 

20 New Jersey Institute of Tech. 1992 1.11 1.78 1.99 

21 Northwestern Univ. 1992 1.47 1.34 1.97 

22 Ohio State Univ. 1992 1.18 1.03 1.21 

23 Ohio Univ. 1992 0.09 2.01 0.18 

24 Oregon State Univ. 1992 1.62 1.35 2.19 

25 Penn State Univ. 1992 1.72 1.02 1.76 

26 Rutgers, The State Univ. 1992 0.99 1.14 1.13 

27 St. Jude Children's Researc 1992 3.71 1.10 4.06 

28 Tulane Univ. 1992 0.85 1.11 0.94 

29 Univ. of Akron 1992 1.51 1.06 1.61 

30 Univ. of Arizona 1992 0.90 1.02 0.91 

31 Univ. of Cincinnati 1992 0.98 1.25 1.22 

32 Univ. of Connecticut 1992 0.47 1.39 0.65 

33 Univ. of Dayton 1992 1.03 1.33 1.38 

34 Univ. of Delaware 1992 1.03 1.27 1.31 

35 Univ. of Iowa Research Fdn. 1992 0.97 1.18 1.15 

36 Univ. of Maryland, College 1992 1.17 1.30 1.51 

37 Univ. of Michigan 1992 0.99 1.18 1.16 

38 Univ. of Minnesota 1992 0.94 0.99 0.93 

39 Univ. of Oregon 1992 0.69 1.30 0.90 

40 Univ. of Southern California 1992 1.61 0.95 1.53 

41 Univ. of Texas Southwestern 1992 0.87 1.32 1.15 

42 Univ. of Utah 1992 0.59 1.13 0.67 

43 Univ. of Virginia Patent Fdn. 1992 0.84 0.94 0.79 

44 Vanderbilt Univ. 1992 1.90 1.12 2.12 

45 Wake Forest Univ. 1992 0.69 1.16 0.80 

46 Washington Univ. 1992 1.45 0.98 1.43 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

1 Baylor College of Medicine 1993 1.45 0.99 1.44 

2 
Brigham & Women's Hospital, 
Inc. 

1993 1.06 0.80 0.85 

3 Brigham Young Univ. 1993 0.18 3.73 0.69 

4 California Institute of Tech. 1993 0.72 0.97 0.70 

5 Case Western Reserve Univ. 1993 1.46 0.80 1.17 

6 City of Hope National Medic 1993 0.55 0.94 0.52 

7 Clemson Univ. 1993 1.33 0.80 1.07 

8 Colorado State Univ. 1993 1.16 0.83 0.96 

9 Dartmouth College 1993 2.13 0.80 1.70 

10 Florida State Univ. 1993 1.72 0.80 1.38 

11 Fred Hutchinson Cancer Res. 1993 0.83 0.77 0.64 

12 Georgia Inst. of Technology 1993 1.98 0.91 1.79 

13 Harvard Univ. 1993 1.10 1.06 1.16 

14 Indiana Univ. (ARTI) 1993 0.96 0.87 0.83 

15 Johns Hopkins Univ. 1993 1.22 1.08 1.31 

16 Massachusetts Inst. of Tech 1993 1.00 1.00 1.00 

17 Mayo Foundation 1993 1.42 0.86 1.22 

18 Michigan State Univ. 1993 1.02 0.93 0.95 

19 National Jewish Center 1993 1.10 0.97 1.07 

20 New Jersey Institute of Tech. 1993 0.83 1.68 1.40 

21 Northwestern Univ. 1993 1.28 0.78 1.00 

22 Ohio State Univ. 1993 0.76 0.90 0.69 

23 Ohio Univ. 1993 1.08 1.00 1.08 

24 Oregon State Univ. 1993 0.71 0.76 0.54 

25 Penn State Univ. 1993 0.91 0.99 0.91 

26 Rutgers, The State Univ. 1993 1.02 0.89 0.91 

27 St. Jude Children's Researc 1993 0.85 0.85 0.72 

28 Tulane Univ. 1993 0.99 0.81 0.80 

29 Univ. of Akron 1993 2.07 1.02 2.11 

30 Univ. of Arizona 1993 1.68 0.95 1.59 

31 Univ. of Cincinnati 1993 0.83 0.83 0.69 

32 Univ. of Connecticut 1993 1.03 0.77 0.80 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

33 Univ. of Dayton 1993 1.06 0.80 0.85 

34 Univ. of Delaware 1993 0.62 0.97 0.60 

35 Univ. of Iowa Research Fdn. 1993 2.03 0.86 1.74 

36 Univ. of Maryland, College 1993 0.65 0.90 0.58 

37 Univ. of Michigan 1993 0.90 0.99 0.89 

38 Univ. of Minnesota 1993 1.03 0.94 0.97 

39 Univ. of Oregon 1993 0.84 1.00 0.84 

40 Univ. of Southern California 1993 0.89 0.91 0.80 

41 Univ. of Texas Southwestern 1993 1.21 0.81 0.98 

42 Univ. of Utah 1993 1.35 0.83 1.12 

43 Univ. of Virginia Patent Fdn. 1993 0.64 0.89 0.57 

44 Vanderbilt Univ. 1993 1.16 0.76 0.88 

45 Wake Forest Univ. 1993 0.81 0.78 0.63 

46 Washington Univ. 1993 1.12 0.96 1.07 

1 Baylor College of Medicine 1994 0.51 1.05 0.54 

2 
Brigham & Women's Hospital, 
Inc. 

1994 0.94 1.32 1.24 

3 Brigham Young Univ. 1994 0.38 1.22 0.47 

4 California Institute of Tech. 1994 1.11 0.92 1.02 

5 Case Western Reserve Univ. 1994 1.38 1.00 1.38 

6 City of Hope National Medic 1994 0.64 1.64 1.05 

7 Clemson Univ. 1994 0.56 1.44 0.81 

8 Colorado State Univ. 1994 2.38 0.92 2.18 

9 Dartmouth College 1994 4.36 1.17 5.11 

10 Florida State Univ. 1994 0.42 1.72 0.72 

11 Fred Hutchinson Cancer Res. 1994 0.71 0.95 0.68 

12 Georgia Inst. of Technology 1994 1.55 0.70 1.09 

13 Harvard Univ. 1994 0.85 1.25 1.07 

14 Indiana Univ. (ARTI) 1994 1.72 0.75 1.28 

15 Johns Hopkins Univ. 1994 0.83 1.18 0.98 

16 Massachusetts Inst. of Tech 1994 0.94 1.01 0.95 

17 Mayo Foundation 1994 0.65 1.18 0.77 

18 Michigan State Univ. 1994 0.85 1.37 1.16 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

19 National Jewish Center 1994 1.91 1.18 2.25 

20 New Jersey Institute of Tech. 1994 0.50 0.80 0.40 

21 Northwestern Univ. 1994 0.44 1.15 0.50 

22 Ohio State Univ. 1994 0.82 0.91 0.75 

23 Ohio Univ. 1994 0.79 1.53 1.21 

24 Oregon State Univ. 1994 0.63 1.12 0.70 

25 Penn State Univ. 1994 0.98 0.99 0.97 

26 Rutgers, The State Univ. 1994 0.78 1.06 0.83 

27 St. Jude Children's Researc 1994 1.02 1.41 1.44 

28 Tulane Univ. 1994 0.69 1.48 1.02 

29 Univ. of Akron 1994 1.58 1.44 2.27 

30 Univ. of Arizona 1994 0.93 0.73 0.68 

31 Univ. of Cincinnati 1994 1.54 1.01 1.56 

32 Univ. of Connecticut 1994 1.72 1.10 1.89 

33 Univ. of Dayton 1994 0.88 1.15 1.01 

34 Univ. of Delaware 1994 1.27 1.02 1.30 

35 Univ. of Iowa Research Fdn. 1994 0.93 1.13 1.05 

36 Univ. of Maryland, College 1994 3.83 0.70 2.69 

37 Univ. of Michigan 1994 1.05 1.06 1.11 

38 Univ. of Minnesota 1994 1.05 0.96 1.02 

39 Univ. of Oregon 1994 1.97 0.97 1.91 

40 Univ. of Southern California 1994 1.14 0.71 0.82 

41 Univ. of Texas Southwestern 1994 0.78 1.36 1.06 

42 Univ. of Utah 1994 1.25 0.70 0.87 

43 Univ. of Virginia Patent Fdn. 1994 1.94 0.75 1.45 

44 Vanderbilt Univ. 1994 1.04 1.05 1.10 

45 Wake Forest Univ. 1994 1.36 1.38 1.88 

46 Washington Univ. 1994 0.97 1.21 1.18 

1 Baylor College of Medicine 1995 1.92 0.95 1.83 

2 
Brigham & Women's Hospital, 
Inc. 

1995 1.23 0.90 1.11 

3 Brigham Young Univ. 1995 1.54 0.65 1.00 

4 California Institute of Tech. 1995 1.34 0.90 1.20 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

5 Case Western Reserve Univ. 1995 0.88 1.36 1.21 

6 City of Hope National Medic 1995 1.71 0.63 1.07 

7 Clemson Univ. 1995 2.15 0.74 1.59 

8 Colorado State Univ. 1995 0.62 1.40 0.87 

9 Dartmouth College 1995 0.11 1.12 0.12 

10 Florida State Univ. 1995 1.90 0.63 1.19 

11 Fred Hutchinson Cancer Res. 1995 0.84 1.04 0.87 

12 Georgia Inst. of Technology 1995 0.88 1.41 1.25 

13 Harvard Univ. 1995 1.18 0.98 1.16 

14 Indiana Univ. (ARTI) 1995 0.78 1.18 0.92 

15 Johns Hopkins Univ. 1995 0.92 1.13 1.03 

16 Massachusetts Inst. of Tech 1995 1.17 1.14 1.33 

17 Mayo Foundation 1995 1.96 0.81 1.58 

18 Michigan State Univ. 1995 1.32 0.78 1.03 

19 National Jewish Center 1995 0.61 0.85 0.52 

20 New Jersey Institute of Tech. 1995 1.65 0.77 1.28 

21 Northwestern Univ. 1995 1.83 0.89 1.63 

22 Ohio State Univ. 1995 1.14 1.16 1.32 

23 Ohio Univ. 1995 0.81 0.72 0.59 

24 Oregon State Univ. 1995 0.98 0.82 0.81 

25 Penn State Univ. 1995 1.46 0.81 1.18 

26 Rutgers, The State Univ. 1995 1.44 0.83 1.21 

27 St. Jude Children's Researc 1995 1.36 0.79 1.07 

28 Tulane Univ. 1995 1.27 0.73 0.93 

29 Univ. of Akron 1995 0.85 0.62 0.53 

30 Univ. of Arizona 1995 0.91 1.31 1.20 

31 Univ. of Cincinnati 1995 1.22 1.02 1.25 

32 Univ. of Connecticut 1995 0.75 0.88 0.65 

33 Univ. of Dayton 1995 0.96 1.15 1.10 

34 Univ. of Delaware 1995 1.61 1.34 2.16 

35 Univ. of Iowa Research Fdn. 1995 0.92 0.85 0.78 

36 Univ. of Maryland, College 1995 0.51 1.40 0.72 

37 Univ. of Michigan 1995 1.53 1.01 1.54 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

38 Univ. of Minnesota 1995 1.30 0.89 1.16 

39 Univ. of Oregon 1995 0.98 0.96 0.94 

40 Univ. of Southern California 1995 0.94 1.41 1.33 

41 Univ. of Texas Southwestern 1995 1.22 0.77 0.94 

42 Univ. of Utah 1995 0.85 1.32 1.13 

43 Univ. of Virginia Patent Fdn. 1995 1.09 1.38 1.50 

44 Vanderbilt Univ. 1995 1.11 0.93 1.03 

45 Wake Forest Univ. 1995 2.55 0.86 2.18 

46 Washington Univ. 1995 1.29 0.89 1.16 

1 Baylor College of Medicine 1996 0.80 1.06 0.85 

2 
Brigham & Women's Hospital, 
Inc. 

1996 0.85 1.33 1.13 

3 Brigham Young Univ. 1996 1.15 1.30 1.50 

4 California Institute of Tech. 1996 1.41 1.08 1.52 

5 Case Western Reserve Univ. 1996 0.88 1.42 1.25 

6 City of Hope National Medic 1996 1.65 1.12 1.84 

7 Clemson Univ. 1996 0.64 1.34 0.87 

8 Colorado State Univ. 1996 0.48 1.45 0.69 

9 Dartmouth College 1996 1.15 1.30 1.49 

10 Florida State Univ. 1996 0.69 1.10 0.76 

11 Fred Hutchinson Cancer Res. 1996 1.12 1.46 1.63 

12 Georgia Inst. of Technology 1996 0.67 1.23 0.83 

13 Harvard Univ. 1996 1.27 0.82 1.04 

14 Indiana Univ. (ARTI) 1996 1.15 1.26 1.45 

15 Johns Hopkins Univ. 1996 1.44 0.88 1.27 

16 Massachusetts Inst. of Tech 1996 0.72 0.83 0.60 

17 Mayo Foundation 1996 0.90 1.12 1.01 

18 Michigan State Univ. 1996 0.97 1.15 1.11 

19 National Jewish Center 1996 1.06 1.28 1.35 

20 New Jersey Institute of Tech. 1996 0.48 1.30 0.62 

21 Northwestern Univ. 1996 0.88 1.31 1.16 

22 Ohio State Univ. 1996 0.97 1.15 1.11 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

23 Ohio Univ. 1996 1.41 1.02 1.43 

24 Oregon State Univ. 1996 1.26 1.49 1.88 

25 Penn State Univ. 1996 0.99 1.04 1.04 

26 Rutgers, The State Univ. 1996 0.60 1.46 0.87 

27 St. Jude Children's Researc 1996 1.13 1.36 1.53 

28 Tulane Univ. 1996 1.21 1.33 1.61 

29 Univ. of Akron 1996 1.05 0.94 0.99 

30 Univ. of Arizona 1996 1.19 1.08 1.29 

31 Univ. of Cincinnati 1996 0.84 1.41 1.18 

32 Univ. of Connecticut 1996 0.88 1.46 1.28 

33 Univ. of Dayton 1996 0.81 1.41 1.14 

34 Univ. of Delaware 1996 0.50 1.35 0.68 

35 Univ. of Iowa Research Fdn. 1996 0.91 1.13 1.02 

36 Univ. of Maryland, College 1996 1.39 1.38 1.92 

37 Univ. of Michigan 1996 0.92 1.01 0.93 

38 Univ. of Minnesota 1996 1.05 0.95 0.99 

39 Univ. of Oregon 1996 0.61 1.33 0.81 

40 Univ. of Southern California 1996 1.01 1.10 1.11 

41 Univ. of Texas Southwestern 1996 1.10 1.29 1.42 

42 Univ. of Utah 1996 0.65 1.45 0.94 

43 Univ. of Virginia Patent Fdn. 1996 0.85 1.30 1.11 

44 Vanderbilt Univ. 1996 1.36 1.38 1.87 

45 Wake Forest Univ. 1996 0.83 1.42 1.17 

46 Washington Univ. 1996 0.80 1.09 0.87 

1 Baylor College of Medicine 1997 0.98 1.10 1.07 

2 
Brigham & Women's Hospital, 
Inc. 

1997 0.66 1.36 0.89 

3 Brigham Young Univ. 1997 0.93 1.47 1.37 

4 California Institute of Tech. 1997 1.15 0.97 1.12 

5 Case Western Reserve Univ. 1997 1.25 1.01 1.26 

6 City of Hope National Medic 1997 1.81 0.94 1.70 

7 Clemson Univ. 1997 1.49 1.01 1.50 

8 Colorado State Univ. 1997 2.70 0.85 2.30 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

9 Dartmouth College 1997 1.43 1.14 1.63 

10 Florida State Univ. 1997 0.34 1.21 0.41 

11 Fred Hutchinson Cancer Res. 1997 0.73 1.07 0.77 

12 Georgia Inst. of Technology 1997 1.07 0.82 0.88 

13 Harvard Univ. 1997 1.11 1.14 1.27 

14 Indiana Univ. (ARTI) 1997 0.74 1.24 0.91 

15 Johns Hopkins Univ. 1997 1.09 1.18 1.29 

16 Massachusetts Inst. of Tech 1997 1.09 1.00 1.09 

17 Mayo Foundation 1997 1.26 1.23 1.56 

18 Michigan State Univ. 1997 0.70 1.24 0.86 

19 National Jewish Center 1997 1.00 1.24 1.24 

20 New Jersey Institute of Tech. 1997 0.77 1.21 0.93 

21 Northwestern Univ. 1997 1.29 0.81 1.04 

22 Ohio State Univ. 1997 1.63 0.83 1.35 

23 Ohio Univ. 1997 0.75 1.29 0.96 

24 Oregon State Univ. 1997 0.52 1.31 0.67 

25 Penn State Univ. 1997 1.01 1.21 1.23 

26 Rutgers, The State Univ. 1997 0.98 1.30 1.27 

27 St. Jude Children's Researc 1997 0.49 1.31 0.65 

28 Tulane Univ. 1997 0.74 1.23 0.91 

29 Univ. of Akron 1997 0.69 2.16 1.50 

30 Univ. of Arizona 1997 1.09 0.86 0.94 

31 Univ. of Cincinnati 1997 0.46 1.15 0.53 

32 Univ. of Connecticut 1997 1.16 1.05 1.21 

33 Univ. of Dayton 1997 0.64 1.25 0.79 

34 Univ. of Delaware 1997 0.55 1.22 0.66 

35 Univ. of Iowa Research Fdn. 1997 0.92 1.24 1.14 

36 Univ. of Maryland, College 1997 0.41 0.81 0.33 

37 Univ. of Michigan 1997 0.84 1.09 0.91 

38 Univ. of Minnesota 1997 1.20 1.06 1.27 

39 Univ. of Oregon 1997 0.58 1.22 0.70 

40 Univ. of Southern California 1997 1.05 0.85 0.89 

41 Univ. of Texas Southwestern 1997 0.63 1.31 0.83 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

42 Univ. of Utah 1997 2.63 0.86 2.27 

43 Univ. of Virginia Patent Fdn. 1997 0.67 0.86 0.57 

44 Vanderbilt Univ. 1997 0.64 1.23 0.79 

45 Wake Forest Univ. 1997 0.64 1.25 0.80 

46 Washington Univ. 1997 1.02 1.26 1.29 

1 Baylor College of Medicine 1998 0.83 0.85 0.71 

2 
Brigham & Women's Hospital, 
Inc. 

1998 1.46 0.85 1.24 

3 Brigham Young Univ. 1998 0.92 0.68 0.63 

4 California Institute of Tech. 1998 1.15 0.86 1.00 

5 Case Western Reserve Univ. 1998 1.24 0.82 1.02 

6 City of Hope National Medic 1998 0.53 1.02 0.54 

7 Clemson Univ. 1998 0.85 0.86 0.74 

8 Colorado State Univ. 1998 1.43 0.93 1.33 

9 Dartmouth College 1998 0.66 1.13 0.74 

10 Florida State Univ. 1998 0.86 0.85 0.73 

11 Fred Hutchinson Cancer Res. 1998 0.70 0.97 0.68 

12 Georgia Inst. of Technology 1998 1.37 0.94 1.28 

13 Harvard Univ. 1998 0.87 0.95 0.82 

14 Indiana Univ. (ARTI) 1998 2.00 0.84 1.69 

15 Johns Hopkins Univ. 1998 0.93 1.01 0.95 

16 Massachusetts Inst. of Tech 1998 1.01 0.96 0.96 

17 Mayo Foundation 1998 1.08 0.87 0.94 

18 Michigan State Univ. 1998 1.38 0.87 1.21 

19 National Jewish Center 1998 0.97 1.09 1.06 

20 New Jersey Institute of Tech. 1998 1.42 1.00 1.42 

21 Northwestern Univ. 1998 1.18 0.93 1.10 

22 Ohio State Univ. 1998 0.58 0.93 0.54 

23 Ohio Univ. 1998 1.35 0.95 1.28 

24 Oregon State Univ. 1998 2.98 0.87 2.58 

25 Penn State Univ. 1998 0.80 1.08 0.86 

26 Rutgers, The State Univ. 1998 0.98 0.93 0.92 

27 St. Jude Children's Researc 1998 0.71 1.01 0.71 

28 Tulane Univ. 1998 0.90 0.86 0.77 
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Table E1: Malmquist Index Scores of the 46 Institutions (continued) 

 
DMU 

ID 
Institutions Year EC TC MI 

29 Univ. of Akron 1998 1.61 0.95 1.53 

30 Univ. of Arizona 1998 0.71 0.93 0.66 

31 Univ. of Cincinnati 1998 0.61 0.98 0.60 

32 Univ. of Connecticut 1998 1.29 0.99 1.28 

33 Univ. of Dayton 1998 1.37 1.01 1.38 

34 Univ. of Delaware 1998 2.19 0.97 2.13 

35 Univ. of Iowa Research Fdn. 1998 1.12 0.85 0.96 

36 Univ. of Maryland, College 1998 2.83 0.94 2.65 

37 Univ. of Michigan 1998 1.19 1.02 1.22 

38 Univ. of Minnesota 1998 1.28 0.92 1.18 

39 Univ. of Oregon 1998 2.29 0.87 2.00 

40 Univ. of Southern California 1998 0.59 0.93 0.55 

41 Univ. of Texas Southwestern 1998 1.42 0.85 1.22 

42 Univ. of Utah 1998 1.11 0.91 1.01 

43 Univ. of Virginia Patent Fdn. 1998 0.74 0.88 0.65 

44 Vanderbilt Univ. 1998 0.99 0.81 0.80 

45 Wake Forest Univ. 1998 2.87 0.77 2.21 

46 Washington Univ. 1998 1.23 0.97 1.19 
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15Appendix F. Normality Test of Cumulative Time-Lag Effect Neutralized Licensing 

Data by Four Institution Types 

Variables Institution Types 
Kolmogorov-Smirnov(a) Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Cumulative Time 
Aggregated 
Expenditure from 
1991 to 1999 
  
  
  

Universities .229 37 .000 .739 37 .000 
Medical Research 
Centers 

.283 3 . .934 3 .503 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.321 4 . .813 4 .127 

Cumulative Time 
Aggregated 
Disclosure from 
1991 to 1999 
  
  
  

Universities .185 37 .003 .779 37 .000 
Medical Research 
Centers 

.338 3 . .852 3 .245 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.237 4 . .932 4 .604 

Cumulative Time 
Aggregated Patents 
Filed from 1991 to 
1999 
  
  
  

Universities .211 37 .000 .717 37 .000 
Medical Research 
Centers 

.289 3 . .928 3 .480 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.327 4 . .788 4 .082 

Cumulative Time 
Aggregated Patents 
Issued from 1992 to 
2004 
  
  
  

Universities .227 37 .000 .700 37 .000 
Medical Research 
Centers 

.222 3 . .985 3 .768 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.283 4 . .937 4 .637 

Cumulative Time 
Aggregated 
Licenses and 
Options Executed 
from 1991 to 1999 
  
  

Universities .161 37 .017 .878 37 .001 
Medical Research 
Centers 

.195 3 . .996 3 .882 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.246 4 . .873 4 .308 

Cumulative Time 
Aggregated Start-
Ups from 1995 to 
2007 
  
  
  

Universities .211 37 .000 .679 37 .000 
Medical Research 
Centers 

.182 3 . .999 3 .935 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.302 4 . .923 4 .554 

Cumulative Time-
Aggregated 
Licensing Income 
from 1996 to 2004 
  
  
  

Universities .241 37 .000 .691 37 .000 
Medical Research 
Centers 

.375 3 . .775 3 .057 

Teaching and Research 
Hospitals 

.260 2 .       

Special Focus 
Institution - Medical 

.348 4 . .841 4 .198 

a  Lilliefors Significance Correction 
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16Appendix G. Normality Test of Cumulative Time-Lag Effect Neutralized Licensing 

Data by Two Institution Types 

  Universities Kolmogorov-Smirnov(a) Shapiro-Wilk 

    Statistic df Sig. Statistic df Sig. 

Cumulative Time 
Aggregated 
Expenditure from 1991 
to 1999 

Non-
university 

.194 9 .200(*) .885 9 .176 

  University .229 37 .000 .739 37 .000 

Cumulative Time 
Aggregated Disclosure 
from 1991 to 1999 

Non-
university .219 9 .200(*) .894 9 .219 

  University 
.185 37 .003 .779 37 .000 

Cumulative Time 
Aggregated Patents 
Filed from 1991 to 
1999 

Non-
university 

.240 9 .142 .739 9 .004 

  University .211 37 .000 .717 37 .000 

Cumulative Time 
Aggregated Patents 
Issued from 1992 to 
2004 

Non-
university 

.194 9 .200(*) .900 9 .254 

  University .227 37 .000 .700 37 .000 

Cumulative Time 
Aggregated Licenses 
and Options Executed 
from 1991 to 1999 

Non-
university 

.288 9 .030 .858 9 .091 

  University .161 37 .017 .878 37 .001 

Cumulative Time 
Aggregated Start-Ups 
from 1995 to 2007 

Non-
university .164 9 .200(*) .916 9 .362 

  University .211 37 .000 .679 37 .000 

Cumulative Time-
Aggregated Licensing 
Income from 1996 to 
2004 

Non-
university 

.331 9 .005 .668 9 .001 

  University .241 37 .000 .691 37 .000 

*  This is a lower bound of the true significance. 
a  Lilliefors Significance Correction 
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